Анализ и оценка аппаратных средств современных ПЭВМ

Страница 3

ПРОИЗВОДИТЕЛЬНОСТЬ

Системная плата должна обеспечивать достижение максимально высокой производительности как процессора и оперативной памяти, так и других частей компьютера — графических адаптеров, жестких дисков и прочих. Поэтому тестирование системной платы на производительность, предполага­ющее оценку быстродействия практически всех компонентов, дает полезную информацию не только о ней самой, но и об этих компонентах. Сопоставление результатов может помочь в выборе того или иного технического решения и конкретных типов комплектующих. Следует сразу оговориться, что не стоит абсолютизировать результаты какого-либо тестирования. Идеальных тестов не бывает, они в той или иной мере рассчитаны на оценку либо выделенных подсистем компьютера, либо на некоторые интегральные характеристики. В данном случае это не более чем ориентир, особенно полезный при настройке системы. Лучший тест - это конкретная рабочая среда конкретного пользователя.

Анализ результатов тестирования показывает, что хотя при­менение новых типов памяти и дает некоторый выигрыш в произ­водительности, он невелик. Это легко понять с учетом того, что даже стандартная кэш-память второго уровня обеспечи­вает для типовых задач доступ к оперативной памяти со скоростью, достаточно близкой к максимально возможной для данного типа процессора, так что дальнейшее ускорение дается с большим трудом и не может быть значительным. Тем не менее, применение новых типов памяти является вполне оправданным, так как позволяет поднять реальную производительность при работе со многими приложениями и в мультизадачной среде. Из некоторых источников и публикаций можно сделать и еще один важный вывод. Он заключается в том, что главное средство повышения производительности всех подсистем компьютера, включая графическую и, с некоторыми оговорками, жесткие диски, — это использование более мощного процессора.

Оперативная память

Практически все компьютеры используют три вида памяти: оперативную, постоянную и внешнюю.

Оперативная память предназначена для хранения переменной информации, как она допускает изменение своего содержимого в ходе выполнения микропро­цессором вычислительных операций. Таким образом, этот вид памяти обеспечивает режимы записи, считывания и хранения информации. Поскольку в любой момент времени доступ может осуществляться к произвольно выбранной ячейке, то этот вид памяти называют также памятью с произвольной выборкой — RAM (Random Access Memoiy). Для построения запо­минающих устройств типа RAM используют микросхемы статической и динамической памяти.

Постоянная память обычно содержит такую информацию, которая не должна меняться в ходе выполнения микропроцессоров программы. Постоянная память имеет собственное наз-вание — ROM (Read Only Memory), которое указывает на то, чт'о она обеспечивает только режимы считывания и хранения. Постоянная память обладает тем преимуществом, что может сохранягь информацию и при отключенном питании. Это свойство получило название энергонезависимость. Все микро­схемы постоянной памяти по способу занесения в них информации (программированию) делятся на масочные (ROM), программируемые изготовителем, однократно программируемые пользователем (Programmable ROM) и многократно программируемые пользователем (Erasable PROM). Последние в свою очередь подразделяются на стираемые электрически и с помощью ультрафиолетового облучения. К элементам ЕРROM с электрическим стиранием информации относятся и микросхемы флэш-памяти. От обычных EPROM они отличаются высокой скоростью доступа и стирания записанной.информации. Вешняя память реализована обычно на магнитных носителях.

Оперативная память

Оперативная память составляет не большую, но, безусловно, важнейшую часть персонального компьютера. Если от ти­па процессора зависит количество адресуемой памяти, то быстродействие используемой оперативной памяти во многом определяет скорость работы процессора, и в конечном итоге влияет на производительность всей системы.

Практически любой персональный IBM-совместимый компьютер оснащен оперативной памятью, реализованной микросхемами динамического типа с произвольной выборкой. (DRAM, Dynamic Random Access Memory). Каждый бит такой памяти физически представлен в виде наличия (или отсутствия) заряда на конденсаторе, образованном в структуре полупроводникового кристалла. Поскольку время хранения заряда конденсатором ограничено (из-за «паразитных» ; утечек), то, чтобы не потерять имеющиеся данные, необход]имо периодическое восстановление записанной информации, которое и выполняется в циклах регенерации (refresh cycle). Это является, пожалуй, одним из основных недостатков динамической памяти, в то время, как по критерию, увеличивающему информационную емкость, стоимость и энергопотребление, этот тип памяти во многих случаях предпочтительнее статической памяти (SRAM, Static RAM). Последняя в качестве элементарной ячейки памяти использует так называемый статический триггер. Этот тип памяти обладает высоким быстзодействием и, как правило, используется в самых «узких». местах системы, например, для организации памяги.

Корпуса и маркировка

Элементы динамической памяти для персональных компьютеров бывают конструктивно выполнены либо в виде отдельных микросхем в корпусах типа DIP (Dual In line Package), либо в виде модулей памяти типа SIP/SIPP (Single In line Pin Package) или типа SIMM (Single In line Mernory Module). Модули памяти представляют собой небольшие текстолитовые платы с печатным монтажом с установленными на них микросхемами памяти в DIP-корпусах. При этом для подключения к системной плате на SIMM используется печатный («ножевой») разъем, а на модулях SIP — штыревой.

Логическая организация памяти

Используемый в IBM PC/XT процессор i8086 через свои 20 адресных линий может иметь доступ к пространству памяти всего в 1 Мбайт. Но в то время, когда появились эти компьютеры, возможность увеличения доступной оперативной памяти в 10 раз (по сравнению с обычными 64 Кбайт) была просто фантастической. Отсюда наверно и появилась «волюн­таристская» цифра — 640 Кбайт. Эти первые 640 Кбайт адресуемого пространства в IBM-совместимых компьютерах называют обычно стандартной памятью (conventional memory). Оставшиеся 384 Кбайт были зарезервированы для систем использования и носят название памяти в верхних или высших адресах (UMB, Upper Memory Blocks). Эта область памяти резервируется под размещение системного ROM BIOS (Read Only Меш Basic Input Output System), видеопамяти и ROM-памяти, полнительных адаптеров.

Дополнительная, или ехрanded-памягь

Почти на всех персональных компьютерах область UMB редко оказывается заполненной полностью. Пустует, как правило, область расширения системного ROM BIOS часть видеопамяти и области под дополнительные модули ROM. На этом и базируется спецификация дополнительной памяти EMS (Expanded Memory Specification), разработка фирмами Lotus Development, Intel и Microsoft (поэтому называемая иногда LIM-спецификацией) еще в 1985 г. и позволяющая использовать оперативную память свыше стандартных 640 Кбайт для прикладных программ. Принцип использования дополнительной памяти основан на переключении блоков (страниц) памяти. В выделяется незанятое «окно» (page frame) в 64-Кбайт, которое разбито на 16-килобайтные страницы. Программные и аппаратные средства позволяют отображать любой 16-килобайтный сегмент этой дополнительной expanded-иамйти в любой из выделенных 16-килобайтных страниц окна. Хотя микропроцессор всегда обращается к данным, хранимым в окне (адрес 1 Мбайт), адреса этих данных могут быть смещены в дополнительной памяти относительно окна на несколько мегабайт. Спецификация LIM/EMS 4.0 позволяет использовать до 2048 логических страниц и расширить объем адресуемой памяти до 32 Мбайт. Кроме этого, как и в EMS, физические страницы могут быть расположены в любом месте памяти , отличный от 16 Кбайт. Таким образом могут задействоваться области видеопамяти и UMB. Возможности спецификации позволяют, в частности, организовать многозадачный режим работы.