Аппаратные средства ПК

Страница 10

C5X – то же, что и Nehemiah.

Esther – кодовое наименование процессоров и ядра. Кэш-память L1 – 128 Кбайт, L2 – 256 Кбайт. Конвейер 17 ступеней. Тактовая частота ядра 2 ГГц.

C5Y – то же, что и Esther.

SiS

550 – базовая модель процессоров серии 550. Основой послужило ядро mP6 от Rise с интегрированным видео и компонентами чипсета.

551 – модель процессора, созданная на основе SiS 550, с поддержкой флеш-карт и шифрования.

552 – модель процессора, созданная на основе SiS 551, с поддержкой аудио- и видеозахвата.

Transmeta

Crusoe – линейка процессоров, ориентированных на мобильные системы. Состоит из моделей TM3200 (L2=0), TM5400 (L2=256 Кбайт), TM5500 (L2=256 Кбайт), TM5600 (L2=512 Кбайт), TM5800 (L2=512 Кбайт), имеющих в своем составе интегрированные компоненты North Bridge. Характеризуются низким энергопотреблением.

Astro – кодовое имя высокопроизводительных процессоров со сверхнизким уровнем энергопотребления. Рабочая частота достигнет 1,4 ГГц при 0,5 Вт. В основе 256-разрядная архитектура.

Compaq

Alpha EV68 – кодовое имя высокопроизводительных процессоров с архитектурой, отличной от традиционной х86. Техпроцесс 0,18 мкм. Базируется на ядре Alpha EV6. Более 15 млн. транзисторов. Модель 1 ГГц объявлена в 2001 г.

Alpha EV7 – кодовое имя высокопроизводительных процессоров. Техпроцесс 0,18 мкм с использованием медных соединений. Базируется на ядре Alpha EV6. Более 100 млн. транзисторов, напряжение питания ядра 1,5 В, мощность тепловыделения 100 Вт, частота 1,2-1,3 ГГц, до 1,75 Мбайт L2, корпус с 1439 контактами. Возможно использование интегрированного контроллера памяти. Выпуск моделей запланирован на 2002 г. В связи с покупкой фирмой Intel в 2001 г. подразделений, патентов и технологий, связанных с процессорами Alpha EVxx, процессоры Alpha EV7 или Alpha EV8, возможно, будут последними разработками этого направления.

Alpha EV8 – кодовое имя высокопроизводительных процессоров с архитектурой, отличной от традиционной х86. Техпроцесс 0,13 мкм с использованием SOI. Более 250 млн. транзисторов, суперскалярное ядро (до 8 инструкций за 1 такт), мощность тепловыделения – 150 Вт, частота от 1,4 ГГц, кэш L2 будет составлять ориентировочно 2 Мбайт, корпус с 1800 контактами. Выпуск моделей запланирован на 2004 г. Возможно, последняя разработка этого направления.

Alpha EV9 – кодовое имя высокопроизводительных процессоров с архитектурой, отличной от традиционной х86. Техпроцесс 0,10 мкм, 500 млн. транзисторов, частота 2-3 ГГц. Выпуск моделей был запланирован на 2006 г.

Alpha EV10 – кодовое имя высокопроизводительных процессоров с архитектурой, отличной от традиционной х86. Техпроцесс 0,07 мкм, 1,5 млрд транзисторов, частота 3-4 ГГц. Выпуск моделей был запланирован на 2008 г.

Оперативная память

Основная часть этого материала посвящена Dynamic RAM (DRAM), применяемой на сегодняшний день в подавляющей части систем. По сравнению с SRAM (Static RAM), применяемой в кеше второго уровня, это - более дешевое решение, однако DRAM работает несколько медленнее из-за необходимости периодического обновления содержимого памяти во избежание потери информации. В настоящее время существуют следующие разновидности DRAM: Fast Page Mode (FPM) и Extended Data Out (EDO), отличающиеся способом доступа к данным и взаимодействием с центральным процессором. Более продвинутыми и технологичными являются Burst EDO (BEDO), Synchronous DRAM (SDRAM), Video RAM (VRAM), Window RAM (WRAM), Synchronous Graphics RAM (SGRAM) и RAMBUS RAM, SDRAM и DDR SDRAM.

В этот список не попали Static RAM (SRAM) и Read Only Memory (ROM). SRAM не нуждается в периодическом обновлении содержимого и применяется в кеше. ROM используется в основном для хранения BIOS, где информация должна сохраняться и при выключенном питании, что и позволяет этот тип памяти. ROM включает в себя также PROM, EPROM, EEPROM и FLASH ROM. Память типа EEPROM и FLASH ROM используется в системах BIOS и может быть обновлена при помощи утилит, поставляемых производителем.

Чипы памяти – упаковка и особенности работы

Модули памяти DRAM выпускаются в виде: DIP (dual in-line package), SOJ (small outline J-lead) и TSOP (thin, small outline package). DIP - это микросхема с двумя рядами выводов по обе стороны чипа и впаиваемая этими контактами в небольшие отверстия в печатной плате. Изначально, модули DIP устанавливались непосредственно в материнскую плату. Однако, в настоящее время, они используются в первую очередь в кеше второго уровня в устаревших материнских платах и вставляются в панельки, припаянные к материнской плате. SOJ - это «тот же DIP, вид сбоку», потому что их выводы просто загнуты на концах, как буква «J». Чипы типа TSOP отличаются небольшой толщиной и имеющие контакты, выведенные во все стороны. SOJ и TSOP разработаны для установки на печатных платах. Однако некоторые производители видеокарт монтируют контактные площадки для установки модулей типа SOJ на свои изделия.

Производители наносят на каждую микросхему маркировку, включающую название производителя, конфигурацию чипа, скорость доступа и дату производства. Эта маркировка наносится не на поверхность, а внедрена в пластмассовый корпус чипа. Единственный способ удалить эту маркировку - спилить ее шкуркой или напильником. Далее на чип наносится защитное покрытие, предающее ему презентабельный вид. Кроме того, некоторые производители наносят на верхнюю часть микросхемы небольшую рельефную точку для обозначения первого вывода чипа и для идентификации перемаркировок, выполненных кустарно.

Выпускаются чипы различной емкости (измеряемой в Мегабитах - 1Мегабайт=8*1Мегабит), например 1 Мегабит (в этом контексте обозначение Mb - это именно Мегабит), 4Mb, 16Mb, 64Mb, 128Mb, 256Mb, 512Mb и недавно появившиеся 1024Mb. Каждый чип содержит ячейки, в которых может храниться от 1 до 16 бит данных. Например, 16Mb-чип может быть сконфигурирован как 4Mbx4, 2Mbx8 или 1Mbx16, но в любом случае его общая емкость 16Mb. Таким образом, первое число маркировки у некоторых производителей указывает на общее количество ячеек в чипе, а второе - на число бит в ячейке. Число бит на ячейку также влияет на то, сколько бит передается одновременно при обращении к ней.

Ячейки в чипе расположены подобно двумерному массиву, доступ к ним осуществляется указанием номеров колонки и ряда. Каждая колонка содержит дополнительные схемы для усиления сигнала, выбора и перезарядки. Во время операции чтения, каждый выбранный бит посылается на соответствующий усилитель, после чего он попадает в линию ввода/вывода. Во время операции записи все происходит с точностью до наоборот.

Так как ячейки DRAM быстро теряют данные, хранимые в них, они должны регулярно обновляться. Это называется refresh, а число рядов, обновляемых за один цикл - refresh rate (частота регенерации). Чаще всего используются refresh rates равные 2K и 4K. Чипы, имеющие частоту регенерации 2К, могут обновлять большее количество ячеек за один раз, чем 4К и завершать процесс регенерации быстрее. Поэтому чипы с частотой регенерации 2К потребляют меньшую мощность. При выполнении операции чтения, регенерация выполняется автоматически, полученные на усилителе сигнала данные тут же записываются обратно. Этот алгоритм позволяет уменьшить число требуемых регенераций и увеличить быстродействие.

Несколько управляющих линий используется для указания, когда осуществляется доступ к ряду и колонке, к какому адресу осуществляется доступ и когда данные должны быть посланы или получены. Эти линии называются RAS и CAS (Row Address Select - указатель адреса ряда и Column Address Select - указатель адреса колонки), адресный буфер и DOUT/DIN (Data Out и Data In). Линии RAS и CAS указывают, когда осуществляется доступ к ряду или колонке. Адресный буфер содержит адрес необходимого ряда/колонки, к которым осуществляется доступ и линии DOUT/DIN указывают направление передачи данных.