Аппаратные средства ПК
Страница 21
Таким образом, для рассматриваемых протоколов ширина спектра сигнала равна символьной скорости.
Остановимся пока на этом, и посмотрим, что же предоставляет нам телефонная линия. А предоставляет она нам обязательство пропускать наши сигналы до удаленного абонента в полосе частот от 300 до 3400 герц, и, будем надеяться, без искажений. Очевидно, что модем должен выбрать такую несущую и такую символьную скорость, чтобы несущая поместилась ровно посередине между 300 и 3400, а символьная скорость была в точности равна 3400-300. Это - необходимое и достаточное условие для того, чтобы спектр сигнала модема ровно занял весь предоставляемый канал. Если он займет меньше, значит часть канала будет неиспользована, и модем сможет передать меньше информации, чем мог бы. Если он займет больше, то часть спектра будет обрезана и удаленный модем его не получит, а, стало быть, не получит и части передаваемой информации. Вообще, есть теоретический предел пропускной способности канала, который нельзя превысить никакими силами. Сколько бы мы ни старались, и как бы мы ни приспосабливали форму нашего сигнала к параметрам линии, мы не сможем передать информации больше этого теоретического предела. Таким образом, главная задача модема - так приспособиться к каналу, чтобы передать через него все, что канал может пропустить.
Продолжим теперь про модуляцию. К паре параметров сигнала - центральной частоте и ширине спектра (т.е. частоте несущей и символьной скорости) нам надо знать про третий определяющий параметр - назовем его глубиной модуляции. Хотя это не до конца правильный термин в данном применении, но сильно похож. Он говорит о том, сколько разных состояний может быть у передаваемого сигнала. Вспомним, что модем передает один символ (не букву!), какое-то время. А затем - другой символ. Символы отличаются друг от друга. Так сколько же всего может быть разных символов? Это зависит, главным образом, от того, сколько разных амплитуд и фаз мы можем передать в канал так, чтобы с противоположной стороны их еще не путали друг с другом. Иными словами, сколько градаций по амплитуде и фазе мы можем выбрать так, чтобы с той стороны они еще однозначно отличались. Как несложно посчитать, например 16 градаций по амплитуде и 16 по фазе дают 16*16=256 различных состояний сигнала, с помощью которых можно закодировать 8 битов информации. В этом случае при символьной скорости, например, в 1000 символов в секунду мы получим скорость передачи информации ровно 8000 битов в секунду. Если глубина модуляции меньше, то есть число состояний сигнала всего 32, к примеру, то мы получим 5 бит за символ, то есть 5 килобит в секунду. Если символьная скорость возрастет до 2000, это будет уже 10 килобит в секунду.
На протоколе V.32 каждый символ соответствует группе бит. При этом эта группа, очевидно, состоит из целого числа бит - от 2 до 6. А поскольку символьная скорость равняется 2400 символов в секунду, добавление очередного бита в группу (и увеличение количества используемых символов в два раза, соответственно), приводит к увеличению битовой скорости на 2400бит/с. Именно поэтому поддерживаемые V.32 скорости - от 4800 до 14400 бит/с с шагом в 2400. Протокол V.34 кодирует символы не по одному, а группами по 8 (так называемыми "кадрами отображения", mapping frames). При этом каждая группа имеет некоторые параметры (амплитудную огибающую), общие для всех 8 символов. За счет этого на один символ может приходиться "дробное" количество бит. Однако из соображений совместимости, список поддерживаемых битовых скоростей и на V.34 состоит из скоростей, кратных 2400, даже если символьная скорость выбрана не 2400, а большая. Например, известная Вам скорость 33600 бит/сек получается при передаче 79 бит на группу из 8 символов на символьной скорости 3429.
А теперь опять посмотрим на то, что нам предоставляет линия. С точки зрения увеличения числа состояний сигнала, она предоставляет нам параметр, именуемый динамическим диапазоном. То есть разницу между самым громким и самым тихим сигналом, который линия еще может пропустить без искажений. Сверху это обычно ограничивается перегрузочной способностью канала, а снизу - уровнем шумов канала. Иначе это еще называют соотношением сигнал/шум (SNR), то есть во сколько раз сигнал на приемной стороне громче шума, к нему примешиваемого. При этом помнят о том, что увеличение громкости сигнала сверх предела, допускаемого линией, невозможно.
И, наконец, еще раз про помехи. Все они сводятся к тому, что модем либо временно перестает различать сигнал, либо вовсе теряется точка привязки, то есть происходит так называемый срыв синхронизации, и модем уже не может без специальных процедур восстановления (retrain) нормально отделять ни символы друг от друга, ни понять, насколько фаза сигнала отличается от образцовой.
Теперь краткое резюме всего изложенного.
1. Параметры канала (линии), предоставляемого нам, характеризуются центром и шириной полосы пропускания (в норме - 300-3400 герц), уровнем шумов и искажений, и максимальным уровнем сигнала, еще пропускаемого без заметных искажений. Сигнал/шум - это характеристика того, как сигнал прошел через канал, и что получилось на приемном конце.
2. Параметры сигнала модема характеризуются центром и шириной спектра (частота несущей плюс и минус половина символьной скорости), и глубиной модуляции, то есть числом возможных градаций состояний сигнала.
3. Параметры канала ограничивают в принципе скорость передачи информации с одной стороны, а модем работает тем лучше и тем быстрее ее передает, чем полнее он занимает канал, и чем ближе параметры генерируемого им сигнала совпадают с возможностями, предоставляемыми каналом.
4. Кроме предыдущего пункта, важное значение имеют помехи: при прочих равных условиях, они вынуждают модем делать передаваемые символы более грубыми, и передавать их более длительное время, то есть снижать в результате скорость передачи информации.
5. Запомните на будущее две простые формулы: 1. Символьная скорость умноженная на глубину модуляции есть битовая скорость. 2. Ширина канала, потребная для передачи сигнала, равна символьной скорости, при этом центр полосы пропускания канала равен частоте несущей.
Сеть Ethernet (созданана фирмой Xerox в 1976 году, имеет шинную топологию, использует CSMA для управления трафиком в главной линии связи). Стандарт организации локальных сетей (ЛВС), описанный в спецификациях IEEE и других организаций. IEEE 802.3. Ethernet использует полосу 10 Mbps и метод доступа к среде CSMA/CD. Наиболее популярной реализацией Ethernet является 10Base-T. Развитием технологии Ethernet является Fast Ethernet (100 Мбит/сек).
Сетевая карта или сетевой адаптер - это плата расширения, вставляемая в разъем материнской платы компьютера. Также существуют сетевые адаптеры стандарта PCMCIA для нотебуков (notebook). Или интегрированные на материнской плате компьютера - они подключаются по какой либо локальной шине. Появились Ethernet сетевые карты подключаемые к USB (Universal Serial Bus) порту компьютера. Сетевые платы характеризуются своей - Разрядностью: 8 бит (самые старые), 16 бит и 32 бита. Следует ожидать появления 64 бит сетевых карт (если их уже не выпустили). - Шиной данных, по которой идет обмен информацией между материнской платой и сетевой картой: ISA, EISA, VL-Bus, PCI и др. - Микросхемой контроллера или чипом (Chip, chipset) , на котором данная плата изготовлена. И который определяет тип используемого совместимого драйвера и почти все остальное : разрядность, тип шины и т.д. - Поддерживаемой сетевой средой передачи (network media): установленными на карте разъемами для подключения к определенному сетевому кабелю. BNC для сетей 10Base-2, RJ45 для сетей 10Base-T и 100Base-TX, AUI для сетей 10Base-5 или разъемы для подключения к волоконной оптике. - Скоростью работы: Ethernet 10Mbit и/или Fast Ethernet 100Mbit, Gigabit Ethernet 1Gbit. - Также, карты на витую пару могут поддерживать или не поддерживать FullDuplex - ный режим работы. - MAC- адресом Для определения точки назначения пакетов (frames) в сети Ethernet используется MAC-адрес. Это уникальный серийный номер присваиваемый каждому сетевому устройству Ethernet для идентификации его в сети. MAC-адрес присваивается адаптеру его производителем, но может быть изменен с помощью программы. Делать это не рекомендуется (только в случае обнаружения двух устройств в сети с одним MAC- адресом). При работе сетевые адаптеры просматривают весь проходящий сетевой трафик и ищут в каждом пакете свой MAC-адрес. Если таковой находится, то устройство (адаптер) декодирует этот пакет. Существуют также специальные способы по рассылке пакетов всем устройствам сети одновременно (broadcasting). MAC-адрес имеет длину 6 байт и обычно записывается в шестнадцетиричном виде, например 12:34:56:78:90:AB Двоеточия могут и отсутствовать, но их наличие делает число более читаемым. Каждый производитель присваивает адреса из принадлежащего ему диапазона адресов. Первые три байта адреса определяют производителя. |