Биотехнологии в освоении Мирового океана
Страница 3
По скоростным характеристикам Т-14 намного отстает от тунца:
скорость лодки Т-14 – 2м/с
скорость обыкновенного тунца – 30м/с.
(Но с данной скоростью обыкновенный тунец может плавать непродолжительное время).
Лодка проходит под водой 12 км (запас в электроэнергии в аккумуляторной батарее обеспечивает работу электродвигателя и других устройств (фара, кинокамера) в течение примерно 2 часа).
Управление маневрами осуществляется с помощью расположенных в корме вертикального и двух горизонтальных рулей им двух наклонных стабилизаторов. Стабилизаторы имеют наклон в 45° к горизонту и примерно 30° в корму и установлены на амортизаторах, отводящих их назад, оберегая тем самым при столкновениях с препятствиями. Рулевая система обеспечивает лодке высокую маневренность, причем маневры могут выполняться сравнительно на небольшом пространстве.
На лодке Т-14 установлена стационарная дыхательная система, обеспечивающая легко водолазу нормальное дыхание в течение 2,5–3 часов, а также дополнительное оборудование, в которое входят комплект приборов, фара и кинокамера.
Лодка создана была в первую очередь для военных (рассчитана на буксировку груза весом до 500 кг).
Не хочется оставить без внимания интересную разработку инженеров Массачусетского технологического института. Изучив, как плавают рыбы, они создали робот, имитирующий движения тунца. Его окрестили Чарли.
– Подобно живому тунцу из породы «голубой плавник», Чарли движется, изгибая позвоночный столб и создавая импульсы, доходящие до хвоста, – объясняет механизм плавания робота инженер Дэвид Баррет. – Движения Чарли обеспечивают 6 маленьких электромоторов, которые передают крутящий момент спинному хребту через сухожилья. Этот проект очень важен для кибернетического переосмысления функций живых организмов. Попытка разобраться в волновом движении рыб приведет к созданию новых, более совершенных движителей подводных судов, что кардинальным образом отразится на их форме. Дизайнеру же предстоит задача – довести их до эстетического совершенства. А теперь окунемся немного в историю. Немалый интерес представляют подводные аппараты Джевецкого и подводная лодка Вадингтона.
Начиная с 1876 года российским изобретателем Джевецким были разработаны и испытаны две лодки, которые можно отнести к рассматриваемому нами классу подводных средств движения.
Корпус первой лодки имел чечевицеобразную форму и был изготовлен из металла. Такая форма ПЛ обеспечивала достаточную управляемость, скорость и хорошую устойчивость.
В корпусе лодки на уровне плеч человека были сделаны специальные отверстия, закрывающиеся изнутри, снаружи к этим отверстиям были прикреплены резиновые перчатки, которые позволяли человеку отсоединять расположенный на внешней поверхности груз (мину), выполнять несложные манипуляции.
В движение лодка приводилась гребным винтом с велосипедным приводом, который позволял лодке достигать требуемой скорости.
Не меньший интерес представляет и вторая лодка Джевецкого. В Ее форме максимально отражена морфология рыб. Экипаж лодки состоял из четырех человек, сидящих спиной к спине по двое. Головы экипажа находились в круглом куполе, снабженном иллюминаторами с толстыми стенками. В передней части рулевой башни находилась оптическая труба с призмами и увеличительными стеклами в ее нижней части (этот прибор, предшественник перископа, позволял рулевому ориентироваться под водой).
Подводная лодка Вадингтона.
Вадингтон – английский изобретатель – построил подводную лодку «Porpoise» в Сикомбле близ Ливерпуля в 1886 году. Корпус рыбообразной формы был 37 футов длиной и 6,5 футов в диаметре в самой широкой части. Построена она была из тонких стальных листов на прочном стальном наборе. Для своего времени это была одна из наиболее «практично разработанных» подводных лодок (ил. _).
Рыбы достаточно хорошо уравновешены. Большинство рыб имеет плавучесть, близкую к нейтральной. Встречаются рыбы с отрицательной плавучестью, что связано с образом их жизни. Для придания нейтральной плавучести рыбы располагают приспособлениями гидростатического и гидродинамического действия (плавательный пузырь, парные грудные плавники).
Плавательный пузырь представляет собой мешок, расположенный между позвоночником и кишкой. Плавательные пузыри бывают двух типов:
1. Открытый плавательный пузырь (например, у золотой рыбки, сельдевых). Он соединен протоком с глоткой, так что воздух может поступать в пузырь или удаляться из него через рот.
2. Закрытый плавательный пузырь (например, у трески). Такой пузырь полностью утратил связь с глоткой. Рыба способна уравнивать плотность тела с плотностью окружающей воды и сохранять нейтральную плавучесть путем автоматического или уменьшения количества газа в пузыре (ил. _).
Принцип использования «открытого плавательного пузыря» можно наблюдать у одноместной лодки (проницаемой), созданной на базе носителя «Пегас».
Отличительной особенностью описываемой лодки является эластичные емкости всплытия, расположенные по бокам корпуса. При плавании под водой емкости сложены вдоль бортов, когда же лодке необходимо придать дополнительную плавучесть для плавания на поверхности, они надуваются сжатым воздухом из специального баллона, расположенного внутри лодки вдоль корпуса носителя.
Может быть принцип работы эластичных емкостей был почерпнут в ходе наблюдения за морскими пузанами (иглобрюхи). В ответ на раздражение они раздуваются, заглатывая воздух в желудок и отходящий от него воздушный мешок и становятся раза в три больше обычного.
Не меньший интерес для конструкторов подводных средств движения представляют китообразные (включая дельфинов). Характерной особенностью всей группы китообразных является отсутствие брюшных плавников, функция которых у рыб в основном сводится к выполнению роли горизонтальных и вертикальных рулей. Совершенно справедливо отмечает В.А. Земский (1960г.), что исчезновение брюшных плавников у китов связано с образованием горизонтально поставленного хвостового плавника. Вертикальные колебания хвостовой лопасти создают силы, вращающие тело в вертикальной плоскости, а уплотненный латерально хвостовой стебель выполняет функции вертикального руля. Такой тип движителя принято называть машущим крылом. Далее мы рассмотрим его применение уже в подводной лодке.
Подводные лодки, приводящиеся в движение пульсацией плавников, должны открыть дверь в будущее новых возможностей субмарин (ил. _). Кристиан Бутнер задумал совершить однодневную экспедицию под льдами Северного Ледовитого океана. Свой принцип гибкого проталкивания он построил на способности туловища рыб, благодаря своей упругости и гибкости, уменьшать гидродинамическое сопротивление на 60%, таким образом революционизировав конструкцию субмарин. Бутнер снимает для субмарины с экипажем ценные параметры и качества с «Robotunas» - искусственной модели рыбы, которая подала идеи для вычисления движения группе ученых МИТ (Массачусетс). Она придумала движительный элемент – гибкий плавник (горизонтально поставленный, как у китообразных).
Как и у рыбы, этот плавник составляет примерно третью часть всей длины субмарины и представляет собой сандвич, образованный резиновой прослойкой и стекловолокном с искусственными мускулами – «Гибкость мускулов» (перевод с французского Хоменко М.).
Идея плавника в роли движителя отнюдь не нова, но ее никогда до конца не разрабатывали. Тот же основной принцип заложен в ласты, но пловцы пользуются ими недостаточно умело. Много лет назад Манфред Карри предложил лодку с плавниковым движителем. Разновидность такой лодки служила австралийским коммандос в Бирме во время Второй мировой войны. При колебаниях с частотой, совпадающей с нормальным ритмом дыхания, плавник обеспечивает плавное устойчивое движение (ил. _).
Один из возможных вариантов гибкого плавника представлен на ил. . Движитель смонтирован на обычных баллонах емкостью 70 фт3. Ребро атаки плавника движется из стороны в сторону с помощью пары мехов, где газ расходует свою энергию. Меха заключены во вспомогательный баллон – рабочий резервуар.