Биотехнология. Вклад в решение глобальных проблем человечества
Страница 2
Значительные успехи достигнуты в генной инженерии растений. В основе этой техники лежат методы культивирования клеток и тканей растений в пробирке и возможность регенерации целого растения из отдельных клеток.
В генной инженерии растений есть свои проблемы. Одна из них состоит в том, что многие полезные свойства растений кодируются не одним, а многими генами. Это делает трудным или невозможным прямое генно-инженерное совершенствование свойств. Другое препятствие, которое постепенно преодолевается, - трудности культивирования и регенерации клеток в целое растение среди некоторых видов, например злаков. Лучшие результаты получены в том случае, когда перенос одного гена может привести к появлению у растения полезного свойства.
Несмотря на ограничения, получены впечатляющие результаты: созданы сорта хлопчатника, томатов, табака, риса, устойчивых к насекомым-вредителям, вирусам, грибковым заболеваниям. Пионер в области применения генно-инженерных растений в с/х - США. Здесь в 1996 году до 20% посевов хлопчатника произведено семенами, модифицированными методом генной инженерии.
Создание генно-инженерных (их сейчас называют трансгенными) животных имеет те же принципиальные трудности, что и создание трансгенных растений, а именно: множественность генов, определяющих хозяйственно ценные признаки. Тем не менее, есть быстро развивающаяся область, связанная с созданием трансгенных животных - продуцентов биологически активных белков.
В высших организмах конкретные гены кодируют производство белков в определенных тканях. Хотя все гены содержатся в каждой клетке, в специализированных клетках работают только некоторые из них, этим и определяется тканевая специфичность. Примером может служить производство белков молока (козеин, лактальбумин) в молочных железах. Есть возможность подставить нужный нам ген под регуляторные последовательности, например казеина, и получить чужеродный белок в составе молока. Важно при этом, что животное чувствует себя нормально, так как чужой ген работает только в процессе лактации.
В мире уже существуют сотни трансгенных овец и коз, продуцирующих в молоке от десятков миллиграмм до нескольких грамм биологически активных белков человека в 1л молока. Такой метод производства экономически выгоден и экологически чище, хотя и требует от ученых больших усилий и времени при создании трансгенных животных по сравнению с созданием генно-инженерных микроорганизмов.
С молоком трансгенных животных можно получать не только лекарства. Известно, что для производства сыра высокого качества необходим фермент, створаживающий молоко, - реннин. Этот фермент добывают из желудков молочных телят. Он дорог и не всегда доступен. Наконец, генные инженеры сконструировали дрожжи, которые стали производить этот ценный белок при микробиологическом синтезе.
Следующий этап генной инженерии - создание трансгенных овец, которые синтезируют химозин в молоке. Небольшое стадо наших овец в России находится на Ленинских Горках под Москвой. Эти овцы синтезируют до 300 мг/л фермента в молоке. Для процесса сыроварения белок можно не выделять, а использовать просто в составе молока.
Возможна экспансия биотехнологии в области, которые сегодня целиком принадлежат химии. Это - биокатализ (вместо химического катализа) и новые материалы. Один из процессов биокатализа, успешно реализованного в промышленности, - получение акриламида из акрилонитрила.
CH2=CH–CN -> CH2=CH-C=0
|
NH2
Акриламид служит исходным мономером для получения полимеров и сополимеров, широко используемых при очистке воды и стоков, в горном деле, при осветлении соков и вин, приготовлении красок и т.п.
До недавнего времени процесс гидролиза нитрила вели при 105 С в присутствии серной кислоты. После окончания процесса серную кислоту нейтрализовали аммиаком. Большое количество сернокислого аммония, в конечном счёте оказывался в реках. Были велики затраты энергии, быстро изнашивалось оборудование, и качество акриламида оставляло желать лучшего.
В 1987 году ученые из института генетики и селекции промышленных микроорганизмов совместно со своими коллегами из Саратовского филиала института приступили к поиску в природе микроорганизмов, которые могли бы превращать акрилонитрил в акриламид, Такие микроорганизмы были найдены. После ряда манипуляций получены микроорганизмы, синтезирующие в 10 тыс. раз больше фермента – нитрилгидратазы, ответственного за трансформацию акрилонитрила.
Достижения учёных реализованы на практике. На одном из заводов, выпускающий антибиотики, налажен выпуск биокатализатора, т.е. нужных микроорганизмов, а ещё на 3 заводах осуществлён процесс биокаталитического получения акриламида. Процесс осуществляется при комнатном давлении и температуре, следовательно, мало энергоёмок. Процесс практически не имеет отходов, экологически чист. Получаемый новым методом акриламид имеет высокую чистоту, что важно, так как большая его часть далее полимеризуется в полиакриламид, а качество полимера сильно зависит от чистоты мономера.
Другой пример относится не к биокатализу, а к биоматериалам. Учёные давно обратили внимание на очень ценные механические свойства материала, из которого пауки плетут сети.
Паутинка примерно в 100 раз тоньше человеческого волоса, этот материал мягче хлопка, прочнее стали, обладает уникальной эластичностью, практически не меняет свойств при изменении температуры, материал идеально подходит для многих практических целей: парашютного корда, бронежилетов и т.д. Вопрос, где взять большое количество паутины по исходной цене?
На помощь пришла генная инженерия. Учёные выделили гены, ответственные за синтез белков паутины, и перенесли их в микроорганизмы. В 1995 г. появилось сообщение американских исследователей, что в микроорганизмах действительно синтезируется нужный белок. Таким образом открывается путь к промышленному микробиологическому синтезу нового материала.
Обычно для роста микроорганизмов используются дешёвые крахмал, патока и другие с/х продукты, т.е. возобновляемое сырьё.
Нужно отметить. Что бактерии синтезируют не нити, а аморфный белок так же, как и пауки. Нить образуется, когда паук выдавливает белок из сопла своих желёз. Технически возможно имитировать этот процесс, продавливая аморфный белок через очень тонкие отверстия. Первые нити из микробиологического белка уже получены. Есть реальная возможность улучшить великолепные качества паутины, внеся некоторые изменения в аминокислотную последовательность белка.
Приведённые примеры далеко не охватывают всех практических аспектов применения генной инженерии. Мы не касались вопросов энергетики, охраны среды, добычи полезных ископаемых, микробиологической промышленности, а также очень важного вопроса – роли генной инженерии в развитии самой молекулярной биологии.
Новая «Зелёная революция», которая уже началась, даст растения, которые не будут нуждаться в пестицидах, а в будущем - и в азотных удобрениях. Прекращение использования
Химических пестицидов резко улучшит состояние окружающей среды, сократит расходы нефти и газа на их производство (на 3%). Появятся новые материалы новые лекарства, высокопроизводительные животные, новые пищевые продукты.
По заключению экспертов конгресса США, «биотехнология в наибольшей степени изменит образ жизни людей в XXI веке».