Адаптация детей и подростков к физическим нагрузкам в условиях Севера

Страница 6

1.2.4. Возрастные особенности адаптации системы кровообра­щения.

Высокие адаптационные возможности сердечно-сосудистой системы, реализующиеся при физических нагрузках, следует рассматривать как эволюционно приобретенные формы приспособительных реакций. Адаптивные изменения обусловлены в первую очередь совершенствованием механизмов энергообеспечения.

Главным источником энергии для сердечной деятельности является окислительное фосфорилирование, т. е. сопряжение окислительных процессов с накоплением энергии в АТФ и Крф. Сам сократительный акт сердечной мышцы— результат трансформации энергии АТФ в механическую работу. Повышенная функциональная нагрузка на сердце при­водит к увеличению активности окислительного фосфорили-рования. Мощность сократительного аппарата сердца с возрастом постепенно увеличивается. Это приводит к повышению систолического и минутного

объемов крови, артериального давления (АД). Эти возрастные изменения связаны в первую очередь с увеличением массы и объема сердца. Систолический объем крови от 1 года до 14—16 лет увеличивается примерно в 6 раз (с 10 до 55—60 мл), темпы роста минутного объема крови несколько ниже. С возрастом частота сердечных сокращений (ЧСС) падает, вследствие чего при сохранении высоких темпов увеличения ударного объема снижается прирост минутного объема крови. От 1 года до 14—16 лет он увеличивается примерно в 3 раза (с 1,2 до 3,8 л/мин).

В дошкольном и младшем школьном возрасте объем сердца растет пропорционально увеличению суммарного просвета сосудов. Но у высокорослых подростков может наблюдаться замедленное увеличение суммарного просвета сосудов по сравнению с увеличивающимся объемом сердца. Это одна из главных причин необходимости строгой индивидуальной дозировки упражнений для подростков с ускоренным (акселераты) или замедленным (ретарданты) биологическим развитием.

1.3. Сократительная функция сердца при мышечной работе

Увеличение ЧСС и сократительной способности сердца— естественные адаптивные реакции на нагрузку. Не случайно ЧСС сохраняет свою значимость как показатель адаптации сердца при использовании любых, самых современных функциональных проб с физической нагрузкой. Да и субъективные ощущения нас редко обманывают: физическая нагрузка дает знать о себе, прежде всего, увеличением ЧСС.

Мышечная работа требует повышенного притока кислорода и субстратов к мышцам. Это обеспечивается увеличенным объемом кровотока через работающие мышцы. Поэтому при работе объем кровотока через мышцы составляет 85 % от его общего объема; в покое — не более 20 % увеличение минутного объема кровотока при работе—один из наиболее надежных механизмов срочной адаптации к динамической нагрузке (рис. 3).

Но реализуется он по-разному: или за счет увеличения ЧСС или за счет увеличения и ЧСС, и ударного объема крови.

Рис. 4 Распределение кровотока при мышечной работе и в условиях относительного покоя:

В нетренированном сердце взрослого человека резервы повышения ударного объема крови исчерпываются уже при ЧСС 120—130 уд/мин. Дальнейший рост минутного объема происходит только за счет ЧСС. По мере роста тренированности расширяется диапазон ЧСС, в пределах которого ударный объем крови продолжает увеличиваться. У высоко­тренированных спортсменов и детей он продолжает нарастать и при ЧСС 150—160 уд/мин.

В самой сердечной мышце срочные адаптивные изменения проявляются в мобилизации энергетических ресурсов. Первичными субстратами окисления в сердечной мышце служат жирные кислоты, глюкоза, в меньшей степени — аминокислоты. Энергия их окисления аккумулируется митохондриями в виде АТФ, а затем транспортируется к сократительным элементам сердца.

При повышении ударного объема крови сокращения сердца учащаются. Происходит это вследствие более эффективного использования энергии АТФ. В растянутой сердечной мышце увеличивается площадь контакта сократительных белков—актина и миозина, т. е. улучшаются

возможности перевода химической энергии АТФ в механическую работу.

Этому способствуют и гормоны надпочечников—адреналин и норадреналин, секреция которых при физической нагрузке увеличивается. Они стимулируют сердечную деятельность, активируя внутриклеточный обмен и ускоряя перекачку Са++ к сократительным элементам сердечной мышцы. Са++ связывает тормозной фактор актина — тропонин, способствуя тем самым взаимному сближению актина и миозина.

Повышение сократительной способности сердца сочетается с совершенствованием восстановительных процессов во время диастолы. Достигаемая при этом экономичность работы сердца хорошо прослеживается при фазовом анализе сократительной функции его желудочков, особенно левого.

1.4. Тренированность как специфическая форма адаптации к физическим нагрузкам. Возрастные особенности развития тренированности

1.4.1. Физиологические механизмы тренированности

В основе развития тренированности лежат механизмы срочной и долговременной адаптации. Типичным примером срочной адаптации является стартовая реакция «боевой готовности». Характерные для нее повышение силы нервных процессов, концентрация мышечных усилий, экзальтированный ответ на внешние раздражения—это элемент срочного приспособления к предстоящей спортивной борьбе.

Механизмы срочной адаптации являются врожденными, наследственно обусловленными. На проявлении срочной адаптации сказываются типологические особенности (свойства) нервной системы. Вот почему у одних спортсменов стартовое состояние проявляется как высокая готовность к предстоящей работе, а у других — как апатия или лихорадочно возбужденное состояние. Несмотря на то что в основе срочной адаптации лежат готовые механизмы, до наступления критической ситуации, к которой следует адаптироваться, они никак не проявляют себя.

Процесс срочной адаптации реализуется по типу стресс-реакции. Максимальная мобилизация физиологических функций в этом случае осуществляется за счет избыточного выделения катехоламинов и кортикостероидов. Естественно, что подобный тип адаптации не может обеспечить рост спортивных результатов. Эта эволюционно запрограммиро­ванная реакция может рассматриваться как временная мера, к которой организм прибегает в критических ситуациях, по жизненным показаниям (например, поведенческая агрессивная реакция нападения, бег с предельной скоростью при недостаточном уровне тренированности).

Повышенная продукция катехоламинов, глюкокортикоидов и других гормонов не проходит бесследно. Она вызывает синтез новых белковых структур, т. е. оставляет структурный след для долговременной адаптации.

Компенсаторные перестройки при долговременной адаптации к работе динамического характера направлены главным образом на увеличение емкости капиллярного русла, обеспечивающего повышенный кровоток. Так, у тренированного бегуна-спринтера плотность капиллярного русла скелетных мышц составляет около 500 капилляров на 1 мм2, у нетре­нированного человека 300—350.

Параллельно с ростом плотности капиллярного русла в мышце обычно увеличивается количество митохондрий, вследствие чего повышается скорость окислительных процессов. Образуется меньше молочной кислоты— главного фактора, лимитирующего продолжительную мышечную работу.

Физические нагрузки в современном спорте столь высоки, что врожденные адаптивные механизмы нередко оказываются недостаточными для обеспечения нормального функционирования организма в этих условия]х. Только специальная тренировка, увеличивающая физиологическую мощность функциональных систем, ответственных за адаптацию, дает воз­можность спортсмену справиться с высокоинтенсивными и большими по объему физическими нагрузками.

При длительных физических нагрузках активируется жировой обмен. Повышается активность ферментов, расщепляющих жиры. В результате этого в крови уменьшается концентрация липопротеинов низкой и очень низкой плотности. Физические нагрузки, лежащие на грани человеческих возможностей, могут сопровождаться серьезными изменениями в белковом обмене, которые могут стать причиной нервных и психических расстройств, нарушения памяти.