Управление сжиганием топлива с учетом его состава и кислородного потенциала печной атмосферы
Страница 3
Обеспечение оптимального по времени изменении расходов еще не означает поддержание заданного соотношения топливо-воздух, так как их параметры непрерывно изменяются. Меняются состав топлива, а следовательно его плотность и теплота сгорания. Вместе с изменением его давления и температуры получается значительная ошибка в измерении расхода и следовательно в расчете требуемого количества воздуха. При изменении температуры и давления воздуха появляется ошибка в измерении его расхода, что влечет за собой ошибку в отработке рассчитанного количества. В результате n может далеко отклониться от n опт.
Для устранения этого явления создают систему, в которой измеряются все параметры топлива и воздуха на подводе к горелке. Измеренные значения расходов с использованием набора соответствующих функциональных блоков приводятся к нормальным условиям, рассчитывается из отношения и сравнивается с заданным. Имеющаяся разность отрабатывается изменением расхода воздуха. Заданное значение уточняется по результатам контроля содержания кислорода в отходящих газах. Такая всеохватывающая система в комбинации с вышеописанной, исключающей запаздывание может обеспечить практически идеальное регулирование n для объекта с сосредоточенными параметрами, например нагревательного колодца с одной горелкой.
Однако для объектов с распределенными параметрами, например многозонной методической печи с большим количеством горелок, определение отношения расходов топлива и воздуха после приведения их к нормальным условиям следует вести в каждой зоне после первой по ходу дыма по сумме расходов в данной зоне и предшествующих ей зонах.
Такой способ регулирования позволяет поддерживать в конце каждой зоны заданный состав продуктов сгорания, а также поддерживать в ней n близкое к n зад., выбранному из условий работы этой зоны в заданном для нее режиме, например для томильной – в режиме без окислительного нагрева. К концу печи можно обеспечить таким образом полное сгорание топлива.
Обеспечить рациональное распределение окислителя по длине печи можно путем последовательного установления коэффициента его расхода для каждой зоны, начиная от томильной. При этом, если в конце печи обнаружится избыток окислителя, то его подачу в зоны уменьшают в направлении обратном движению металла, а при недостатке – увеличивают в направлении движения металла. Коэффициент расхода изменяют циклично в диапазоне от 0,7 - 1,4 с последовательно уменьшающимся шагом от зоны к зоне в пределах 0,2 - 0,05 в каждом цикле. Такое последовательное приближение к n опт. для всей печи за счет отхода от n опт. в каждой зоне обеспечит улучшение использования топлива и снижение окалинообразования.
Все описанные способы и системы усовершенствуют традиционную схему регулирования объемного соотношения топлива и воздуха и при всех их достоинствах являются системами стабилизации входных параметров, работающими без сигнала обратной связи. В качестве такого сигнала может быть использован сигнал о количестве кислорода в продуктах горения. Достоверность такого сигнала в качестве обратной связи может оказаться крайне низкой по причинам, которые будут рассмотрены ниже, для ряда же объектов он может явиться очень полезным параметром, особенно на некоторых стадиях их работы.
Использование такого сигнала очень перспективно, например при управлении отоплением колпаковых печей отжига или нагревательных колодцев. В период нагрева и вплоть до начала выдержки, когда расход топлива велик и даже незначительные отклонения от n опт. вызывает большие потери, корректировка работы системы регулирования соотношения по содержанию О2 в отходящих газах или непосредственное регулирование расхода воздуха по этому параметру обеспечивает значительную экономию топлива.
В период выдержки, когда расходы газа и воздуха снижаются до величин, при которых горелка начинает работать неустойчиво, поддерживать заданное значение О2 уже невозможно. Поэтому импульс О2 отключают, оставляя только его контроль, расход газа определяет регулятор температуры, а расход воздуха – система регулирования соотношения или его стабилизируют на уровне, обеспечивающем устойчивую работу горелки и минимально допустимое давление внутри печи.
Для методических печей при снижении их нагрузки поддержание постоянной величины заданного содержания О2 в продуктах горения не целесообразно даже еще и при устойчивой работе горелок. Отключение корректирующего сигнала надо производить на время открытие заслонок окон посада и выдачи, через которые в печь устремляются большие массы холодного воздуха, существенно нарушающие процессы сжигания топлива и нагрева металла. Устройство управления процессом горения в нагревательных печах имеет контур управления температурой путем изменения расхода топлива. По расходу топлива устанавливается расход воздуха, который корректируется по отклонению измеренного содержания кислорода в продуктах горения от заданного, которое, в свою очередь устанавливается с учетом нагрузки печи. При открытие заслонок корректирующий сигнал отключается, а вместо него подключается другой сигнал, обеспечивающий изменения расхода воздуха на величину ориентировочно равную количеству холодного воздуха, поступающего через открытое окно. При закрытие заслонок этот сигнал отключается, расход воздуха возвращается к первоначальному значению. Через некоторое время, необходимое для стабилизации горения, подключается корректирующий импульс по содержанию кислорода.
Метод прямого регулирования расхода воздуха по содержанию кислорода при всей его кажущейся простоте до сих пор не нашел широкого применения даже на объектах, работающих при нагрузках близких оптимальным. Причиной является рассмотренное выше запаздывание как в измерительной системе так и в отработке регулирующего воздействия. В результате анализа частоты следования возмущений, требующих изменения расхода воздуха, и времени запаздывания этого изменения на примере теплоэнергетического котла, работающего при 80% нагрузке, показано, что время работы с n, заметно отличается от n опт., составляет почти половину времени работы котла и не может быть уменьшено. Хорошие результаты могут быть получены либо при устранении запаздывания, либо при стабилизации параметров топлива и воздуха и нагрузки агрегата.
Для частичной компенсации запаздывания вводят сигнал по расходу воздуха, организуют дифференциальную цепочку уже в системе измерения и суммируют два параметра, характеризующих процесс – содержание кислорода и недожог. Для этого сигнал по расходу воздуха дифференцируют, сигнал химического недожога инвертируют и суммируют с сигналом содержания кислорода, суммарный сигнал преобразуют в линейный и совместно с дифференцированным сигналом по расходу воздуха используют для формирования регулирующего воздействия. Кроме уменьшения запаздывания такой способ регулирования позволяет поддерживать минимальное содержание О2 и избежать остаточной неравномерности регулирования.
Стремление работать с минимальным содержанием О2 объясняется попытками выйти на экстремум зависимости тепловыделения от коэффициента расхода воздуха. Однако эта зависимость достаточно размыта и наклон кривой слева, больше чем справа. Следовательно даже идеальный регулятор обеспечит погрешность удержания экстремума слева большую, чем справа. Для устранения этого дефекта и обеспечения максимального использования энергии топлива дополнительно измеряют разность средних наклонов левой и правой ветвей, формируют корректирующий сигнал, пропорциональный этой разности, и суммируют его с основным сигналом задания регулятору соотношения.
Работа с предельно малым содержанием кислорода ведет к тому, что в факеле по его длине одновременно присутствуют и О2 и СО даже при n > 1. Если обозначить величину недожога за О , то наибольшая температура в факеле будет в точке где n – О =1. Если при установке датчика температуры в этой области, задать желаемое содержание СО и начальную температуру факела, то высокое качество управление процессом горения можно обеспечить за счет того, что оптимальный расход воздуха стабилизируется в зависимости от параметра качества процесса горения, который однозначно характеризует этот процесс. Для реализации этого способа необходимо в схему регулирования соотношения объемов топлива и воздуха ввести корректирующий импульс по отклонению произведения температуры на соотношение от заданного для этого произведения постоянного значения, определяемого из заданных начальных температуры и концентрации О2 и СО.