Вакуумное напыление
Вакуумное напыление
ВВЕДЕНИЕ
Интенсивное развитие метода испарения и конденсации в вакууме за последние годы обусловлено универсальностью технологии, высокой производительностью процесса нанесения покрытий, малой энергоёмкостью и рядом других преимуществ по сравнению с традиционными методами получения покрытий различного функционального назначения (гальваническим осаждением, плакированием, плазменным напылением, катодным распылением). Одно из основных преимуществ метода испарения и конденсации в вакууме – экологически чистая технология.
Постоянно возрастающие потребности народного хозяйства и разнообразие номенклатуры металлизируемой продукции обусловили появление широкого класса специальных вакуумных установок, предназначенных для решения конкретных производственных задач – металлизации рулонных и полосовых материалов, нанесение защитных, износостойких, декоративных покрытий на металлические и неметаллические материалы, изготовление различных плёночных элементов электронной техники.
ЗАКОНОМЕРНОСТИ ИСПАРЕНИЯ И КОНДЕТСАЦИИ МЕТАЛЛОВ В ВАКУУМЕ.
Процесс получения плёнок и покрытий методом испарения и конденсации в вакууме состоит из двух этапов: испарения вещества в вакууме и последующей конденсации паров на подложке. Испарение различных материалов в вакууме, в том числе и металлов, происходит при нагревании до температуры плавления и испарения (сублимации) либо при распылении (методы катодного и магнетронного распыления). Металлы можно нагревать резистивным методом (испарители прямонакального и косвенного нагрева), электронным лучом, электрической дугой, токами высокой частоты. Способы нагрева, определяющие конструкции соответствующих внутрикамерных устройств промышленных вакуумных установок, детально описаны в инструкции по эксплуатации установок. Большая часть металлов при нагреве переходит в паровую фазу через жидкое состояние, т.е. сначала они плавятся, а затем испаряются. Некоторые металлы (Cd, Zn, Mn и в отдельных случаях чистый Cr) переходят из твёрдого состояния, в паровую фазу минуя жидкую (сублимируют).
Скорость испарения Vи, кг/(м2с), всех веществ определяется давлением паров p, Па, при температуре Tи, K, испарения и молекулярной массой M вещества:
Vи = 0.43810 –2 p ÖM/Tи = A1 p (1.1)
Зависимость давления паров от температуры в общем, виде описываются уравнением
lg p =AT –1 + B lg T + CT + DT 2 + E (1.2)
где А, В, С, D и Е – константы, характерные для данного вещества.
При проведении экспериментов обычно ограничиваются коэффициентами А, В, и Е. Значение коэффициента В следует учитывать только для Na, K, Rb, Cs, Zn, Cd и Hg.
Характер распределения испаряемого вещества в пространстве над испарителем определяется двумя основными параметрами: рабочим давлением в вакуумной камере: высокий вакуум (l >> d), средний вакуум (l » d) и низкий вакуум (l << d), где l - длина свободного пути молекул; d – линейный размер вакуумной камеры. Если давление паров испаряемого вещества (металла) при температуре Tи не превышает 1.33 Па, то при рабочем давлении в вакуумной камере порядка 10 –2 Па и менее молекулы и атомы испаряемого вещества достигают поверхности подложки без столкновений между собой и с молекулами остаточных газов. В этом случае говорят, что реализуется молекулярный режим испарения и конденсации, для которого справедливы законы Ламберта – Кнудсена:
распределение в пространстве потока вещества, испарённого с плоской поверхности, пропорционально cosj (j - угол между направлением распространением паров и нормалью к поверхности);
число частиц, попадающих на поверхность подложки, обратно пропорционально квадрату расстояния между испарителем и подложкой.
Эти законы являются базовыми при анализе закономерностей формирования плёнок на поверхностях различной конфигурации.
При анализе процесса формирования покрытий на положках следует выделить два аспекта – физический и технологический.
Физический аспект отражает закономерности формирования начальных слоёв покрытия, характер продольной и поперечной структур, рельефа поверхности и др. Не рассматривая детально теорию зародышеобразования и основные закономерности начального роста кристаллов, отметим, что процесс конденсации и структура сформированной плёнки существенно зависят от кинетических параметров конденсации, температуры и потенциального рельефа подложки, плотности падающего молекулярного пучка, характера взаимодействия осаждаемых атомов с подложкой. Из указанных параметров существенным является температура подложки. Многочисленными исследованиями установлено, что на нейтральной (неориентированной) подложке молекулярный пучок конденсируется только в том случае, если температура ниже некоторой критической Tкр.
Принципиально возможны и реализуются на практике два механизма конденсации молекулярных пучков испарённых веществ на различных подложках – ПК(пар – кристалл) и ПЖК(пар – жидкость – кристалл). Если реализуется механизм ПК, то частицы, конденсирующиеся на начальных стадиях испарения навески, имеют кристаллическое строение, и в дальнейшем формируется только кристаллическая плёнка. Механизм ПЖК проявляется в том, что образование конденсированной фазы на подложке начинается с появления на подложке жидкой фазы в виде капель, которые длительное время существуют на подложке, после чего начинается процесс кристаллизации.
Рассмотренные механизмы кристаллизации определяют различные характеры формирования и роста плёнки из паровой фазы, что в конечном счёте определяет свойства плёнок. Схематически механизмы конденсации ПК и ПЖК показаны на рис. 1. Если конденсируемые атомы связаны с собой сильнее, чем с поверхностью нейтральной подложки, они свободно и достаточно интенсивно мигрируют с её поверхности. При достаточно высокой плотности потока испаряемого вещества на поверхности подложки образуются зародыши кристаллической фазы или жидкой конденсированной фазы, которые сначала разрастаются сначала в двух (Рис.1, б, стадия 3), я затем и в трёх направлениях. Если же силы взаимной связи атомов или молекул конденсирующегося вещества меньше сил их связи с подложкой, резко возрастает влияние кинетических параметров подложки на процесс формирования плёнки по механизму ПК. В таблице 1 даны примеры механизмов конденсации различных металлов на аморфных подложках. Следует отметить, что механизм конденсации зависит (в первом приближении) от соотношения температур подложки Tп и температур плавления Tпл конденсирующихся веществ. При изменении Tп может измениться механизм конденсации. При конденсации молекулярных пучков сложного состава (например, при нанесении покрытий из сплавов) механизм конденсации зависит и от состава паровой фазы. Приведённые в таблице 1 данные установлены для случая формирования плёнок «докритической» толщины, т.е. до момента образования сплошного слоя. После завершения формирования сплошного слоя закономерности дальнейшего роста плёнки определяются не непосредственно механизмом конденсации материала, а в основном структурой первично сформированных слоёв.
Технологический аспект процесса конденсации отражает характер распределения толщины плёнки вдоль поверхности подложки и рассматривает влияние геометрических параметров испарения (размеров и формы испарителей и подложки, их взаимного расположения) и режима металлизации на равномерность толщины покрытия.