Вода и ее применение в современных технологиях

Страница 3

1.3 Точки кипения и замерзания (плавления).

Что касается температуры кипения, то она находится в прямой зависимости от давления: с увеличением давления она возрастает (рис. 5). Это свойство воды раньше использовалось для определе­ния высоты местности в горах. Температура кипения повышается также с увеличением содержания в воде растворенных веществ.

Иная зависимость наблюдается между давлением и точкой замерзания (плавления) воды, с повыше­нием давления она падает (но только до давления 2200 атм). При дальнейшем увеличении давления точка замерзания воды начинает расти: при давлении 3530 атм вода замерзает при минус 17; при 6380 атм—при 0°С, при 16500 атм—при 60, а при 20 670 атм — при 76 °С. В последних двух случаях мы уже имеем горячие льды. Возможно ли существова­ние в земных недрах сочетания таких температур и давлений? В свободно циркулирующих в породах Земли водах, безусловно, нет, так как даже на гра­нице нижней литосферы и верхней мантии, называе­мой границей Мохоровичича (как мы увидим из даль­нейших глав), где давление приблизительно 10000 атм, температура никак не может быть равна 30 "С,

а всегда и везде будет значительно выше. Таким Образом, встреча горячего льда здесь исключается. Выше же границы Мохоровичича совершенно исклю­чаются давления выше 6000 атм, которые необходи­мы для образования горячего льда.

При давлении 1 атм аномальны точки замерзания (плавления) и кипения воды (соответственно 0 и 100°С). Если взять ряд соединений водорода с эле­ментами группы Via периодической системы Мен­делеева — Н2Те, H2Se H2S и H2O — с учетомих относительной молекулярной массы, то окажется, что точки замерзания и кипения воды не укладываются в закономерность, общую для трех других соединений, у которых чем больше относительная молекулярная масса, тем выше точки кипения и замерзания. Точ­ка замерзания воды должна была бы находиться между минус 90 и минус 120 °С, а в действительности она приходится на ±0 °С. То же самое можно ска­зать о точке кипения воды, которая должна была бы быть между 75 и 100 °С (рис. 5).

При нормальном давлении вода может «замер-рать» и при положительной температуре. Это наблюдается, например, в газопроводе, когда проходящий по нему газ (в основном метан) плохо осушен, т.е. в нем присутствует вода. Объем молекулы газа по сравнению с объемом молекулы воды значительно больше, что приводит к понижению внутреннего давления и к повышению температуры замерзания от нескольких градусов до 20 °С. Выпадающий «лед» содержит много газа (газогидрат).

Сам факт существования воды в обычных для земной поверхности термодинамических условиях во всех трех фазах (твердой, жидкой и газообразной) делает это вещество крайне удивительным и необык­новенным.

1.4 Теплота плавления.

Познакомимся с еще одной аномалией воды, называемой, может быть, не очень удачно «скрытой теплотой плавления воды». У воды она очень высока — около 80 кал/г (для сравнения «скрытая» теплота плавления чистого железа — 6, серы—9,5 и свинца—5,5 кал/г). Как же проявля­ется эта аномалия? Лед при давлении 1 атм может иметь температуру от минус 1 до минус 7°С. Каза­лось бы, чем ниже температура льда, тем больше потребуется тепла, для того чтобы растопить его. Этот вывод как будто настолько естествен, что не­посвященный в физику тепла вряд ли станет его оспаривать. Но, оказывается, этот вывод не бесспорен. Например, при температуре льда 7°С ниже нуля скрытая теплота плавления составит не 80, а только 76 кал/г! Вот это уже бесспорная и довольно неожи­данная аномалия. С каждым градусом понижения температуры льда теплота плавления уменьшается чуть ли не на полкалории. Объясняется это тем, что удельная теплоемкость у льда меньше, чем у воды.

Скрытая теплота парообразования (539 кал/г) почти в 7 раз выше, чем скрытая теплота плавления. Чтобы превратить жидкую воду с температурой 100 °С в пар с такой же температурой, нужно затра­тить поистине гигантскую энергию, в то время как '/з этой энергии вполне достаточно, чтобы превратить в пар спирт, и '/в, чтобы жидкую ртуть сделать парообразной. Можете теперь себе представить, какой громадной внутренней энергией в скрытой форме об­ладает водяной пар, и это только при 100 °С! А если его нагреть до 500 °С, то 1 г его потенциально будет содержать порядка 1000 кал тепла. К сожалению, реализовать эту скрытую энергию практически очень трудно.

Как известно, пар используется в паровых машинах, которых становится все меньше и меньше из-за исключительно низкого (ниже) к. п. д. и не только в силу невозместимых естественных потерь на тре­ние, излучение, теплопроводность и других, но и по причинам малой разности температур между граница­ми существования воды, а также малого контраста между температурой окружающего воздуха и точкой парообразования. Эти обстоятельства в настоящее вре­мя заставляют заменить паровые двигатели двигате­лями внутреннего сгорания, электрическими и другими.

Что же касается скрытой теплоты парообразова­ния, то тут аномальности не наблюдается. Чем хо­лоднее жидкая вода, тем больший приток тепла нужен ей, чтобы обратить ее в пар. Так, при 0°С теплота парообразования 587 кал, при 50 °С — 568, а при 100 °С — 536, при 150 °С — 446 кал.

1.5 Поверхностное натяжение и прилипание.

Поверхностное натяжение — это способность пограничных молекул воды, а также твердых тел сцепляться, «стягиваться», самоуплотняться (когезия). На поверхности воды образуются сцепления молекул, создающие пленку натяжения, для разрыва которой потребуется немалая сила. На этой пленке могут лежать, не погружаясь в воду, предметы, кото­рые в 8 раз и более тяжелее воды, например лез­вие безопасной бритвы, иголка и др. Поверхностное натяжение воды при 18°С составляет 72 дин/см— это очень высокое значение (сравните: для спирта оно составляет 22, для ацетона 24, для бензина 29 дин/см). Только ртуть имеет еще более высокое по­верхностное натяжение — 500 дин/см.

Теоретически установлено, что для разрыва стол­бика чистой воды диаметром 2,5 см потребуется при­ложить усилие 95 те. Поскольку, как уже упоминалось выше, совершенно чистой воды в природе нет, да и в лабораторных условиях получить ее почти невоз­можно, то в условиях эксперимента с не совсем чистой водой для разрыва столбика воды сечением 6,5 см2 потребуется усилие в пределах «только» 1 те, что близко к прочности стали.

У воды есть и еще одно удивительное свойство — «прилипание» (адгезия), которое можно наблюдать в узких стеклянных трубках (капиллярах), где вода

Поднимается вверх вопреки силам притяжения (гравитации). В таких трубках сочетаются силы сцепления молекул воды в пограничном с воздухом слое со способностью воды смачивать стекло, «прилипать» к нему. В результате в капилляре образуется вогнутая поверхность выше естественного уровня воды. У рту­ти, обладающей более высоким поверхностным натя­жением, адгезия отсутствует, поэтому ртуть в капил­лярной трубке имеет не вогнутую, а выпуклую поверхность. Необходимо заметить, что к поверхно­стям, покрытым жировым слоем, например парафи­ном, вода не прилипает и мениск ее в капилляре, подобно мениску ртути, будет не вогнутый, а выпук­лый.

Существует понятие капиллярной постоянной, ко­торая равна произведению высоты подъема жидкости на радиус капилляра. Капиллярная постоянная для чистой воды линейно уменьшается с увеличением температуры, а при достижении критической (см. ни­же) становится равной нулю. Предельная высота капиллярного подъема воды при 15 °С составит в крупном песке около 2, в мелком 1,2 м, а в чистой глине 12 м, причем продолжительность подъема для крупных капилляров—5—10 суток, а для мелких до 16 месяцев.

1.6 Теплоемкость воды.

Остановимся на следу­ющей аномалии воды, которая связана с ее теплоем­костью. Теплоемкость воды сама по себе не аномаль­на, но она в 5—30 раз выше, чем у других веществ. У всех тел, кроме ртути и жидкой воды, удельная теплоемкость с повышением температуры возрастает. У воды же удельная теплоемкость в ин­тервале температур от 0 до 35 °С. падает, а затем начинает возрастать (рис. 6).