Волоконно-оптические гироскопы

Страница 3

(9)

Рис. 7. Схема измерителя фазы выходного сигнала для волоконно-оптического гироскопа со световым гетеродинированием

(N — целое число), т. е. здесь получается частотное изменение Df2 электрического сигнала, пропорциональное угловой скорости W, что очень удобно для практической реализации устройства.

Шумовые факторы, методы их устранения

Методы повышения чувствительности еще не обеспечивают высокой стабильности, необходимо учитывать шумовые фак­торы и принимать меры по их устранению.

Основные оптические системы с повышенной стабильностью

Для достижения высокой стабильности необходимо, чтобы внешние возмущения, воспринимаемые световыми лучами, движущимися в противоположных направлениях, были совершенно одинаковыми.

В основной оптической системе, показанной на рис. 4, при использовании светоприемника 1 свет дважды отражается рас­щепителем луча и, кроме того, дважды проходит сквозь него. При этом условие одинаковой длины оптического пути выпол­няется не совсем точно и вследствие температурных колебаний характеристик расщепителя луча на выходе возникает дрейф. При использовании светоприемника 2 происходит то же самое. Чтобы световые лучи, введенные в оптическое волокно и излучаемые волокном, проходили одинаковый оптический путь, объединялись и разъединялись в одной и той же точке расщепителя луча, а также имели бы одинаковую моду, необходимо между расщепителями луча установить пространственный фильтр. В этом фильтре желательно использовать одномодовое оптическое волокно — то же, что и для чувствительной катушки.

Обычно в одномодовом оптическом волокне возможно распространение двух независимых мод с ортогональной поляризацией. Но поскольку оптические волокна обладают не совсем строгой осевой симметрией, фазовые постоянные этих двух мод различны. Однако между модами двух поляризаций происходит обмен энергией, характеристики которого изменяются под внеш­ним воздействием, поэтому излученный волокном свет обычно приобретает круговую поляризацию с неустойчивыми парамет­рами. Все это приводит к дрейфу выходного сигнала.

Если же на оптическом пути поместить, как это показано в обведенной штриховой линией части на рис. 4, поляризаци­онную пластину, т. е. пустить на оптический путь интерферо­метра световую волну с единственной поляризацией и в излу­чаемом свете выделить только составляющую с такой же поля­ризацией, то передаточная функция кольцевого оптического пути (оптического волокна) для лучей с противоположным на­правлением движения будет одинакова и, тем самым, проблема решена. Но и в этом случае остаются колебания мощности света, достигшего светоприемника, поэтому необходимо принять еще меры по стабилизации масштабного коэффици­ента. Одна из таких мер — введение деполяризатора, который компенсирует колебания поляризации в опти­ческом волокне и делает состояние поляризации произвольным, или введение оптического волокна, сохраняющего поляризацию. В гироскопах со световым гетеродинированием эффективное решение проблемы — нулевой метод.

Для устранения дрейфа, обусловленного колебаниями поля­ризации в оптическом волокне, требуется поляризатор с очень большим затуханием (около 90 дБ), но это требование смягча­ется при использовании оптического волокна с сохранением поляризации и источника света с низкой когерентностью. В оп­тическом волокне с сохранением поляризации из-за разности фазовых постоянных для мод с ортогональной поляризацией возникает разность длины оптического пути для этих мод, поэтому использование источника с низкой когерентностью излучения делает невозможным интерференцию между модами. Аналогичного эффекта можно добиться и при использовании деполяризатора.

Таблица 1. Шумовые факторы в волоконно-оптических гироскопах

Шумовой фактор

Рекомендуемые меры по снижению шума

Колебания поляризации в оптическом волокне, например, преобразование линейной поляризации в круговую в одномодовом волокне

Включение на выходе волокна анали­затора, для того чтобы выделить со­ставляющую поляризации одного направления

Разность длины оптических путей для световых волн, идущих в противопо­ложных направлениях, при динами­ческой нестабильности спектра ис­точника света

Стабилизация спектра источника света

Разность частот волн, идущих по во­локну в противоположных направле­ниях, при колебаниях температуры

Использование двух акустооптических модуляторов или модуляция прямо­угольными импульсами

Неравномерность распределения тем­пературы вдоль волокна

Намотка оптического волокна, при ко­торой распределение температуры симметрично относительно середины катушки

Изменение фазы выходного сигнала из-за эффекта Фарадея в волокне под воздействием колебаний магнит­ного поля Земли

Магнитное экранирование и использо­вание волокна с сохранением поля­ризации

Колебания (в расщепителе луча) отно­шения интенсивности прямого и об­ратного луча вследствие оптического эффекта Керра

Модуляция излучаемого света прямо­угольными импульсами со скважностью 50%; использование широкополосного источника света

Интерференция прямого луча и луча обратного рассеяния Рэлея

Фазовая модуляция световой волны; импульсная частотная модуляция лазерного излучения; использование слабоинтеферирующего источника света

Факторы, ограничивающие разрешающую способность

Рис. 8. Основные шумовые факторы в чувствительном кольце из оптического волокна

Среди факторов, ограничивающих кратковременную разрешающую способность, наиболее сильное влияние оказывает обратное рассеяние по оптическому пути. Свет отражения Френеля от поверхностей элементов оптической системы или свет обратного рассеяния Рэлея, например, в самом оптическом волокне интерферирует со светом сигнала, что приводит к возникновению множества шумов. Для борьбы с ними предлагаются модуляция фазы световой волны, импульсные методы, а также метод, при котором используется источник света с широким спектром и низкой когерентностью, ухудшающий интерференцию из-за большой разности длины оптического пути для света обратного рассеяния Рэлея и света сигнала. (Таким источником может служить многомодовый полупроводниковый лазер или суперлюми­несцентный диод.)

Шумы выходного сигнала гироскопа можно выразить следующей формулой:

Рис. 9. Уменьшение шумов рэлеевского рассеяния посредством расширения спектра светового источника

(10)

где a0 — потери рассеяния Рэлея в оптическом волокне; bR — доля светового рассеяния Рэлея, распространяющаяся в обрат­ном направлении; Dfs — ширина спектра источника света.