Восстановление железа
Страница 2
Первый — высокотемпературное восстановление. Процесс требует 1600 градусов. Поскольку атомные реакторы такой температуры дать не могут, главным агрегатом служит струйно-плазменный реактор, использующий для генерации плазмы - ядерную энергию.
Восстановительный газ — водород, смешанный или без посторонних примесей, расплавляет железо и его сплавы, восстанавливает, 'и в виде дождя жидких капель металл попадает в плавильную печь, где идут операции легирования.
Существует схема среднетемпературного восстановления, когда процесс протекает при температуре 900 градусов. Восстановитель— водород или в чистом виде, или с примесью окиси углерода. Железо, естественно, находится в твердом состоянии, образуя при восстановлении своеобразную губку.
Метод позволяет полностью без промежуточных звеньев использовать атомно-энергетическую установку. Большую часть газа-восстановителя нагревают в теплообменнике атомного реактора. Правда, там температура невелика. Но это не беда. К такому "холодному" газу можно подмешать более горячий, нагретый за счет электроэнергии ядерного реактора. Получается смесь, вполне пригодная для технологии.
Наконец, при низкотемпературном восстановлении тепло поставляется атомным реактором. Можно считать, что тут в чистом виде используется ядерная энергия.
Таковы три вида технологических процессов, которые, по мнению многих специалистов, имеют право на существование.
Конечным продуктом везде являются железо, вода и углекислый газ, причем воду можно снова использовать для получения водорода и кислорода. Таким образом, появляются реальные возможности осуществить замкнутый цикл восстановления железа, создать безотходное производство.
Металлургию будущего не без основания часто называют водородной. Использование водорода для нужд черной металлургии — реальность недалекого будущего.
Сейчас водород получают двумя испытанными методами — гидролизом воды и ее электролитическим разложением, проще говоря, электролизом. Существует, правда, химическое разложение, более выгодное, но оно не столь распространено, на что имеется ряд чисто технических причин. Поиск новых способов "продолжается, ибо важность проблемы несомненна.
В целом ряде лабораторий страны изучают взаимодействие молекул воды и так называемых энергоаккумулирующих веществ - сплавов, в состав которых входят алюминий, кальций и кремний. Опять-таки происходит разложение молекул воды, отбирается кислород и, выделяется водород.
Предварительные расчеты и первые эксперименты показали: можно получать водород с такой низкой себестоимостью, что "водородная металлургия" обретет, наконец, надежную экономическую основу. А если учесть еще полную экологическую безопасность водородных методик, то сомнений в том, что именно они и представляют собой будущее нашей старинной профессии, ни у кого не возникает.
При всей внешней таинственности наименования энергоаккумулирующие вещества - ЭАВ - встречаются достаточно часто. Их, скажем, легко получить из золы, запасы которой в нашей стране поистине неисчерпаемы.
Как видите, мы снова выяснили, что необходимо ввести в металлургию прямое водородное восстановление железа, теперь мы пришли к тому же, исходя их энергетических позиций. Кроме того, водородное производство безотходное. Значит, атомная металлургия сулит выигрыш по всем трем направлениям, на которых основано современное экономичное производство - минимум топлива и сырья, максимум забот об окружающей природе.
Разумеется, водородное восстановление - только начало технологического цикла металлургии. Но и остальные звенья - будь то конвертеры, электропечи, заводы-автоматы, аппараты малооперационной технологии - требуют хорошего исходного сырья. Им будет восстановленное водородом железо, то есть побочный продукт ядерных реакторов. Когда речь идет о научно-техническом прогрессе, нельзя ограничиваться технологическими схемами - сами по себе они ничего не решают. Необходимы новые формы содружества науки, техники и производства. Без них новшество, интереснейшие проекты, блестящие разработки ученых застрянут в лабораториях или предстанут в натуре лишь в виде небольших опытных установок, а производство, промышленность по-прежнему будет ориентироваться на "дедовскую" технологию.
Решение о создании в СССР металлургического комбината на базе процесса прямого восстановления железа было принято в 1974 году. Тогда же было подписано соглашение о сотрудничестве при его строительстве с группой германских фирм. Результатом этого сотрудничества явилось то, что в ноябре 1982 года в цехах Оскольского электрометаллургического комбината была получена первая промышленная партия окатышей.
Оскольский электрометаллургический комбинат (г. Старый Оскол) – первое крупное отечественное предприятие бездоменной металлургии, на котором предусмотрена принципиально новая технология производства металла, основанная на прямом получении металла из руды, что позволяло на базе природной шихта получать высококачественный прокат, характеризующийся особой чистотой по содержанию вредных примесей и однородностью химического состава.
Уже на первом этапе строительства комбинат характеризовался следующими весьма внушительными показателями:
Годовая мощность комбината по производству –
окатышей окисленных 2433 тыс. тонн,
окатышей металлизированных 1700 тыс. тонн,
стали 1450 тыс. тонн,
проката (товарного) 1240 тыс. тонн
Число работающих –8127 человек.
Производительность труда (выработка товарной продукции в пересчете на одного работающего в год в натуральном выражении) – 152,6 тонн.
Общая сметная стоимость строительства - 2367,2 млн. рублей
Из них промышленного - 1907,7 млн. руб., в т.ч. по комбинату 1447,8 млн. руб.
Продолжительность строительства 5 лет.
Заданный объем производства комбината - (крупносортный прокат) не имел в то время аналогов в мировой практике. Однако, потребность в таком количестве чистого сортовогометалла, была явно завышена. Основным потребителем металла такого качества было производство шарикоподшипников. В последствие сортамент проката был расширен за счет среднесортного и мелкосортного проката, а в перспективе и толстолистовой стали.
В основу технологического процесса прямого восстановления железа при проектировании комбината положен Мидрекс - процесс (разработанный в США фирмой "Мидленд-Росс"), он позволял осуществить восстановление окислов железа обожженных окатышей до 95% Fe в шахтных печах природным газом, предварительно конвертируемым кислородом (для получения смеси газов H2 и СО). Первая в мире фабрика, использующая Мидрекс-процесс, была построена в Портленде, США, в 1969 году Она была рассчитана на производство 400 тыс. тонн металлизованных окатышей в год, используемых в качестве шихты дуговых электроплавильных печей. Кроме того, в 1971 году была введена в эксплуатацию фабрика в Джорджтауте (США). В последствии лицензия на Мидрекс-процесс была продана фирме "Вилли Корф А.Г." ФРГ, построившей по этой лицензии небольшой завод около Гамбурга в рекламных целях. На нем перерабатывались шведские окисленные окатыши, содержавшие 67% железа. На заводе имелся агрегат конверсии природного газа. Это предприятие и было в свое время продемонстрировано руководству СССР, что и определило впоследствии основного проектировщика и поставщика оборудования для ОЭМК.
Ознакомившись с содержанием проекта, бывший начальник доменного отдела Гипромеза, доктор технических наук, Н. К. Леонидов высказал мнение, о том, что строящийся в Старом Осколе ОЭМК будет убыточным. Он полагал, что в стране нет ни кадров, знающих этот новый технологический процесс по всему металлургическому циклу, ни соответствующего оборудования, что большую часть оборудования придется закупать за границей, кроме того, в стране нет достаточного количества богатой железной руды, а так же потребуются большие капитальные вложения в строительство такого предприятия. В результате всего перечисленного следует ожидать высокую себестоимость продукции. По мнению Н. К. Леонидова, использование подобной технологии могут позволить себе Иран, Саудовская Аравия, Кувейт и другие страны богатые нефтью. Для восстановления железа и использования его в виде металлизированных окатышей требуется очень много электроэнергии. Получение губчатого железа целесообразно в странах богатых запасами природного газа и железных руд, а так же дешевыми источниками электроэнергии. Кроме того, губчатое железо со временем окисляется, происходит его пассивация, в результате при небольших размерах окатышей возникают сложности с их непрерывной загрузкой в дуговую электропечь. Поэтому при окислении металлизированных окатышей приходится их использовать в доменном производстве, что экономически не выгодно.