Организация статистического контроля качества дорожно-строительных работ

Страница 3

0,3076>0,15 - неоднородная выборка

2.4. Определение абсолютной и относительной погрешностей выборки. Оценка влияния числа измерений на точность определения статистических характеристик.

Вывод: При выборке N=10 среднеарифметическое значение имеет низкую погрешность, остальные значения погрешностей достаточно высоки (более 5%). При выборке N=5 среднеарифметическое значение также имеет низкую погрешность, остальные значения погрешностей высоки (более 50%), а дисперсия более 100%. В целом, можно заключить, что при N=10 меньших процент погрешностей, чем при N=5.

Учитывая вышеизложенное, можно сказать, что с увеличением числа измерений точность определения характеристик возрастает, как следствие, погрешности уменьшаются.

Контрольная карта N = 5

Контрольная карта N = 10

Контрольная карта N = 20

3. Интервальная оценка параметров распределения.

1. Определить границы доверительного интервала для единичного результата измерения по формуле для N = 20 для всех уровней Pдов.

2. Построить кривую .

3. Определить границы доверительного интервала для истинного значения

для N=20; 10; 5 для всех уровней Pдов.

4. Графически изобразить интервалы для N=20; 10; 5 при Pдов. = 0,9

Вывод: С уменьшением количества измерений границы доверительного интервала раздвигаются (для истинного значения случайной величины).

5. Исключение результатов, содержащие грубые погрешности.

Выборку из 20-ти измерений проверить на наличие результатов с погрешностями

методом «».

X20=2,084 Xmax = 2,75

Xmin=1,44

t=3

Pдов.=0,997

Неравенства являются верными, следовательно, в данной выборке (N=20) нет величин, содержащих грубую погрешность

2. Проверить выборки из 5-ти и 10-ти измерений на наличие результатов в погрешностями по методу Романовского для 3-х уровней доверительной вероятности. Определить при каком уровне доверительной вероятности появляется необходимость корректировать выборку.

Для N=10

Для N=5

Вывод: в выборках при N=10; 5 нет значений, содержащих грубую погрешность, следовательно нет необходимости в корректировке данных при всех уровнях доверительной вероятности Pдов.

Часть 3

Проверка гипотезы о подчинении выборки нормальному закону распределения.

1. Построение гистограммы экспериментальных данных.

2. Построение теоретической кривой.

3. Вычисление

4. Оценка согласия экспериментальных и теоретических данных

при

при

Вывод: Гипотеза не отвергается, т.к. существует большая вероятность того, что расхождение между теоретическими и экспериментальными данными - случайность, обусловленная недостатком числа измерений или недостаточной точностью измерений.

Интервал

Границы интервала

Середина интервала

Частота

Нижняя

Верхняя

1

1,05

1,28

1,165

1

-0,900

0,810

2,70

0,01

0,551

0,449

0,365

2

1,28

1,51

1,395

3

-0,670

1,347

2,01

0,051

2,811

0,189

0,013

3

1,51

1,75

1,63

9

-0,435

1,703

1,30

0,164

9,040

-0,040

0,000

4

1,75

1,98

1,865

20

-0,200

0,800

0,60

0,325

17,915

2,085

0,243

5

1,98

2,21

2,095

18

0,030

0,016

0,09

0,393

21,663

-3,663

0,619

6

2,21

2,44

2,325

19

0,260

1,284

0,78

0,275

15,159

3,841

0,973

7

2,44

2,67

2,555

8

0,490

1,921

1,47

0,116

6,394

1,606

0,403

8

2,67

2,9

2,785

2

0,720

1,037

2,16

0,029

1,599

0,401

0,101

Сумма

80

 

8,918

 

2,7178

1,7312

 

1,00

0,229

12,623

 

2,065

 

0,00

0,398

21,939

 

2,3988

 

1,00

0,229

12,623