Акустические свойства полупроводников

Акустические свойства полупроводников

План

1. КАК УСТРОЕН ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ПОЛУПРОВОДНИК

2. ПОГЛОЩЕНИЕ И УСИЛЕНИЕ ЗВУКА

3. НЕЛИНЕЙНЫЕ ЭФФЕКТЫ ПРИ УСИЛЕНИИ ЗВУКА

4. УСИЛЕНИЕ АКУСТИЧЕСКИХ ШУМОВ И СВЯЗАННЫЕ С ЭТИМ ЯВЛЕНИЯ

5. ЗВУКОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

6. Заключение

1. КАК УСТРОЕН ПЬЕЗОЭЛЕКТРИЧЕСКИЙ

ПОЛУПРОВОДНИК

Мы уже говорили, что в полупроводниках имеет смысл изучать в первую очередь те акустические эффекты, которые обусловлены взаимодействием звука с электронами проводимости. Ведь именно небольшое число электронов проводимости отличает полупроводник от диэлектрика. Типичные концентрации электронов в тех случаях, которые нас будут интересовать, составляют 1011 - 1016 см-3.

Рассмотрим акустические эффекты только в одном типе полупроводников, а именно в пьезоэлектрических полупроводниках. Акустические эффекты в них наибо­лее ярко выражены, лучше и подробнее всего исследо­ваны.

Пьезоэлектрики - это такие кристаллы, в которых под влиянием однородной деформации возникают дипольный момент, а значит, и электрическое поле, пропорциональные деформации. Наличие пьезоэлектрических свойств тесно связано с симметрией кристалла. Пояс­ним это на модели ионной решетки, изображенной на рис. 1,а. На этом рисунке положительные попы закрашены. а отрицательные изображены светлыми кружка­ми. Видно, что если эту решетку подвергнуть однород­ной деформации, то она не поляризуется (рис. 1,б). Рассмотрим теперь решетку, изображенную на рис, 2,а. Если эту решетку подвергнуть деформации растяжения в направлении, указанном стрелкой, то она поляризует­ся, поскольку «центры тяжести» положительных и отри­цательных ионов при этом сдвигаются друг относитель­но друга (рис. 2, б, в). Наоборот, если поместить такую решетку в однородное электрическое поле, она деформируется. Деформация кристалла, пропорциональная приложенному электрическому полю, называется прямым пьезоэлектрическим эффектом; возникновение электри­ческой поляризации при деформации — обратным пье­зоэлектрическим эффектом.

Пьезоэлектрический эффект существует в целом ряде полупроводников — CdS, Zn0, GaAs, InSb, Те и др. Большинство опытов, в особенности на первом эта­пе, было проведено на CdS — этот полупроводник яв­ляется довольно сильным пьезоэлектриком и в то же время фотопроводником (т. е. изменяет свою проводи­мость при освещении). Поэтому в нем, как уже говорилось, легко можно отделять электронные эффекты.

Если в пьезоэлектрике распространяется звук, т. е. волна деформации, то она сопровождается электриче­скими полями, обладающими пространственной и вре­менной периодичностью звуковой волны. Эти поля про­дольные, т. е. параллельные направлению распростра­нения звука. Можно сказать, что в пьезоэлектриках всякая звуковая волна сопровождается волной продоль­ного электрического поля (мы его будем называть пьезоэлектрическим полем). В качестве оценки напря­женности этих полей можно привести следующую циф­ру: при распространении звука в таком сильном пьезо­электрике, как CdS, при плотности потока звуковой энергии S порядка 1 Вт/см2 амплитуда напряженности переменного поля может достигать нескольких сотен вольт на сантиметр.

Выясним теперь, как влияет пьезоэлектрический эф­фект на распространение звука в пьезодиэлектриках. Пусть продольный или поперечный звук распространя­ется в пьезодиэлектрике вдоль оси симметрии кристал­ла, которую назовем осью ОХ. Деформация в такой волне характеризуется величиной du/dx, где и{х) — смещение точки кристалла в звуковой волне. В непьезоэлектрическом кристалле при такой деформации воз­никает упругое напряжение S:

S = λ du/dx

где К — модуль упругости. Это соотношение выража­ет известный закон Гука. В пьезоэлектрике, как мы ви­дели, при деформации возникает дипольный момент, на который действует электрическое поле Е. В резуль­тате при наличии поля Е в пьезоэлектрнке упругое на­пряжение равно:

S = λ du/dx + βE (1)

где β — так называемый пьезоэлектрический модуль. Кроме того, при деформации в пьезоэлектрике возника­ет дополнительная поляризация. Соответственно в обычном соотношении, связывающем электрическую ин­дукцию D с напряженностью поля Е (D=εE, где ε — диэлектрическая проницаемость), появляется допол­нительный член — 4лβ du/dx.

Для вычисления скорости звука в пьезодиэлектрике достаточно соотношение (1) и соотношение между D и Е подставить в уравнение теории упругости:

ρ d2u/dt2 = ds/dx

(ρ — плотность кристалла) и в уравнение Пуассона dD/dx = 0 (диэлектрик!). В результате несложных преобра­зований получается величина:

ωd = √ λ ⁄ ρ * (1 + χ)½ , χ = 4πβ²/ελ (2)

Первое слагаемое в выражении для ωd дописывает вклад от близкодействующих упругих сил, которые су­ществуют и в непьезоэлектриках. Второе обусловлено .дополнительными квазиупругими силами, связанными с пьезоэлектрическими полями. Таким образом, роль пьезоэлектрического эффекта определяется величиной χ , которую мы назовем коэффициентом пьезоэлектриче­ской связи. В большинстве известных пьезоэлектриче­ских полупроводников χ не превышает 0,1. Поэтому ве­личину χ можно считать малым параметром теории, что мы и будем делать в дальнейшем. Так, вместо (2) имеем:

ωd = ω0(1 + χ/2), ω0 = √ λ ⁄ ρ

Обратимся теперь к пьезополупроводникам. Как взаимодействуют электроны проводимости с пьезоэлек­трическим полем? Предположим сначала, что звук «замер» — созда­на периодическая в пространстве статистическая де­формация:

u(x) = u0 cos qx.

В пьезодиэлектрике из уравнения Пуассонамысразу бы получили: E = 4πβ du/dx ε. Электрический потенциал поля φ был бы при этом равен (Е = — dφ/dx).

φ0 = 4πβu / ε

А что будет с электронами в полупроводнике? Они перераспределятся в пространстве, стремясь стечь с по­тенциальных «горбов» и заполнить потенциальные «ямы». При этом уменьшится первоначальный потенциал (φ0, или, как говорят, произойдет его экранирование электронами проводимости. Поэтому первый вопрос, который следует решить: как перераспределяются электроны в поле потенциала и каким образом они его бу­дут экранировать? Для решения этого вопроса следу­ет выяснить, как нужно описывать движение электро­на в поле звуковой волны. Это существенно зависит от того, какова величина соотношения между длиной звуковой волны 2л/q и длиной l свободного пробега электронов — какова величина параметра ql. Этот па­раметр играет центральную роль в теории акустических свойств проводников; при различных его значениях электроны по-разному взаимодействуют со звуком. Обычно в пьезоэлектрических полупроводниках ql «1, поэтому пока ограничимся рассмотрением этого слу­чая. В чистых металлах при низких температурах мо­жет выполняться противоположное неравенство. Об этом пойдет речь в следующей главе.

Условие ql «1 означает, что на расстояниях поряд­ка длины звуковой волны электрон успевает много раз столкнуться. В процессе столкновений устанавливается равновесное распределение электронов — электроны лишены индивидуальности, и их можно описывать как объемный заряд, характеризуемый электропроводно­стью о и коэффициентом диффузии D. В результате плотность тока j можно записать в виде:

j = σ (- dφ/dx) – e D dn/dx

где n — концентрация электронов. В стационарном состоянии плотность тока j в отсутствие внешнего электрического поля должна обращаются в нуль. Потому