Акустические свойства полупроводников

Страница 2

n – n0 = - σφ / e D ,

где n0 - равновесная концентрация электронов. Если это выражение подставить в уравнение Пуассона, имеющее в полупроводнике вид:

dD/dx = 4π(n – n0)e ,

и использовать выражение для D, то сразу получим:

φ = φ0 (qR)2 / (1 + ((qR)2) (3)

Здесь - радиус экранирования Дебая — Хюккеля, равный

R = √ εD/4πσ = √ εκΤ/4πe²n0 (4)

(Τ — температура, κ — постоянная Больцмана).

Таким образом видно, что степень экранирования пьезоэлектрнческого потенциала определяется соотно­шением между длиной волны 2π/q и радиусом экрани­рования R Обычно говорят о дебаевском экранирова­нии, когда речь идет, например, о кулоновском поле иона: поле «голого» заряда 1/r в результате экраниро­вания приобретает вид: 1/r ехр(- r / R ), В данном же

случае речь идет об экранировании пространственно-периодического потенциала. При qR «1 устанавлива­ется почти полное экранирование, и φ « φ0. Наоборот при qR »1 перераспределение электронов в простран­стве почти не реагирует на коротковолновый звук. Со­отношение (3) можно понять еще и следующим обра­зом. В стационарном состоянии имеет место равнове­сие тока проводимости (вызванного наличием поля) и диффузионного тока (вызванного перераспределением электронов в пространстве). Поэтому электроны пере­распределяются тем в большей степени, чем больше от­ношение электропроводности к коэффициенту диффу­зии (т. е. чем меньше R при заданной величине q). В свою очередь, чем больше электронов перераспредели-

лось в пространстве, тем более эффективно экранирование затравочного потенциала φ0.

Приведем характерные значения радиуса экраниро­вания в типичных случаях. В CdS при комнатной температуре и n0 = 1012 см-3 R = 5 * 10-4 см: при n0 =1014 см-3 R = 5 * 10-5 см.

Учтем теперь, что бегущая звуковая волна не стоит на месте, а распространяется по кристаллу, создавая электрическое поле, меняющееся в каждой точке кри­сталла с частотой звука ω². Поэтому возникает вопрос, за какое же время устанавливается статическая кар­тина экранирования, описанная выше. Таким характерным временем является максвелловское время ре­лаксации:

τ = ε/4πσ

Оно обратно пропорционально электропроводности σ, что естественно: ведь именно благодаря процессам электропроводности электроны проводимости могут перераспределяться в пространстве.

Если величина ωτ мала, то за период звука статиче­ское экранирование успевает установиться почти пол­ностью, и картина пространственного распределения электронов мало отличается от той, которая была бы в статическом случае. При этом, как мы видели, потен­циал φ отличается от φ0 множителем (qR)2 [1 + (qR)2 ]-1. Такой же множитель должен появиться и в слагаемом, описывающем вклад в скорость звука за счет пьезоэлектрического эффекта:

ω = ω0 [1 + χ (qR)2 /2 (1 + (qR)2 )]

В обратном предельном случае, когда ωτ »1, экранирование не успевает установиться, и скорость звука в полупроводнике равна ωd.

2. ПОГЛОЩЕНИЕ И УСИЛЕНИЕ ЗВУКА

При распространении бегущей звуковой волны пространственное распределение электронов стремится следовать за пространственным распределением пьезоэлектрического потенциала. Соответственно пере­менные пьезоэлектрические поля порождают перемен­ные электронные токи, которые и «подстраивают» рас­пределение электронов к распределению потенциала. При протекании этих токов в проводнике должно вы­деляться джоулево тепло. В результате при распространении звука механическая энергия звуковой волны переходит в энергию беспорядочного теплового дви­жения, т. е. происходит поглощение звука. Интенсив­ность поглощаемого звука изменяется по закону:

S (х) =S (0) ехр( - Гх),

где S(0) — интенсивность «на входе» кристалла. Вели­чина Г называется коэффициентом поглощения звука.

Для отношения коэффициента поглощения звука Г к величине его волнового вектора q можно получить следующее выражение:

Г / q = χωτ/((1 + q2R2)2 + (ωτ) 2) (5)

Частотной зависимости этого выражения можно дать следующее наглядное объяснение.

Переменный ток, создаваемый пьезоэлектрическим почтем, вызывает перераспределение свободных заря­дов. Перераспределенные заряды, в свою очередь, соз­дают добавочное электрическое поле. Оно, как уже го­ворилось, направлено противоположно первоначально­му электрическому, полю и, следовательно, приводит к уменьшению тока проводимости; τ и есть то время, за которое происходит перераспределение свободных за­рядов. При статической деформации заряды перерас­пределяются и их поле компенсирует (экранирует) пьезоэлектрическое поле. таким образом, что ток ста­новится равным нулю.

Если деформация измеряется с частотой ω, которая гораздо меньше 1/ τ, устанавливается почти полная ком­пенсация. Точнее, поле объемных зарядов в случае пе­ременной деформации, создаваемой звуком, отличается от статического поля на малую величину, пропорциональную ωτ. Поэтому в пьезоэлектрике протекает пере­менный ток, пропорциональный той же малой величине ωτ. Соответственно коэффициент Г, определяемый квадратом плотности тока, оказывается пропорциональным ω2.

В обратном предельном случае больших ωτ поле объемных зарядов за период звука вообще не успевает возникнуть. Поэтому при ωτ »1 коэффициент пропор­циональности между плотностью тока и электрическим полем оказывается вообще независящим от частоты. Не зависит от частоты и коэффициент Г. Член (ωτ) 2 в знаменателе (5) и обеспечивает предельный переход от одного случая к другому. . Наконец, при qR » 1 коэффициент поглощения быст­ро убывает при увеличении частоты. Это связано с тем (уже отмечавшимся выше) обстоятельством, что звуко­вая волна, длина которой гораздо меньше радиуса эк­ранирования, почти не вызывает перераспределения за­ряда даже в статическом случае.

Коэффициент поглощения достигает максимально­го значения при частоте ωm = ω0/R, т. е. когда длина волны равна 2πR; максимальное значение Гmo коэффи­циента поглощения равно χ/4R.

Характер частотной зависимости коэффициента по­глощения определяется величиной ωmτ. Если ωmτ « 1, то максимум получается сравнительно острым.

В противоположном предельною случае коэффици­ент поглощения растет пропорционально ω2 вплоть до частот порядка 1/τ, после чего его рост становится очень медленным. Максимум в этом случае оказывает­ся более пологим. При ω » ωm коэффициент поглоще­ния во всех случаях убывает пропорционально ω2. Се­мейство Г(ω) при разных значениях ωmτ приведено на рис. 3.

Интересно проследить характер зависимости коэф­фициента поглощения Г от электронной концентрации n0. Обычно проводимость σ пропорциональна n0: σ = е n0μ, где μ - так называемая подвижность электро­нов. Таким образом, максвелловское время релаксации τ обратно пропорционально n0. Радиус экранирования R, как мы видели, обратно пропорционален √ n0 (см. (4)). Поэтому при малых концентрациях электро­нов коэффициент Г прямо пропорционален n0, а при больших - обратно пропорционален n0. Существует, таким образом, при любой частоте (о некоторая промежуточная концентрация nw, при которой коэффициент Г максимален.

Оценим коэффициент поглощения Г для какого-ни­будь типичного случая. Рассмотрим, например, попереч­ный звук в CdS, скорость которого ω0 = 1,8 х 105 см/с. Пусть n0 = 5 х 1012 см-3, ω = 3 х 108 с-1, μ = 300 см2/Вс, χ = 0,036, ε = 9,4, Т=300 К. Тогда τ = 3,5 х 10-9 с, R= 1,6 х 10-4 см, q= 1,7 х 103 см-1, и мы получаем, что коэффи­циент Г составляет около 30 см-1. Это означает, что на расстоянии в 1/30 ~ 0,03 см интенсивность звука зату­хает в с раз, т. е. теория предсказывает сильное затуха­ние уже при таких малых концентрации и частоте.