Акустические свойства полупроводников
Страница 2
n – n0 = - σφ / e D ,
где n0 - равновесная концентрация электронов. Если это выражение подставить в уравнение Пуассона, имеющее в полупроводнике вид:
dD/dx = 4π(n – n0)e ,
и использовать выражение для D, то сразу получим:
φ = φ0 (qR)2 / (1 + ((qR)2) (3)
Здесь - радиус экранирования Дебая — Хюккеля, равный
R = √ εD/4πσ = √ εκΤ/4πe²n0 (4)
(Τ — температура, κ — постоянная Больцмана).
Таким образом видно, что степень экранирования пьезоэлектрнческого потенциала определяется соотношением между длиной волны 2π/q и радиусом экранирования R Обычно говорят о дебаевском экранировании, когда речь идет, например, о кулоновском поле иона: поле «голого» заряда 1/r в результате экранирования приобретает вид: 1/r ехр(- r / R ), В данном же
случае речь идет об экранировании пространственно-периодического потенциала. При qR «1 устанавливается почти полное экранирование, и φ « φ0. Наоборот при qR »1 перераспределение электронов в пространстве почти не реагирует на коротковолновый звук. Соотношение (3) можно понять еще и следующим образом. В стационарном состоянии имеет место равновесие тока проводимости (вызванного наличием поля) и диффузионного тока (вызванного перераспределением электронов в пространстве). Поэтому электроны перераспределяются тем в большей степени, чем больше отношение электропроводности к коэффициенту диффузии (т. е. чем меньше R при заданной величине q). В свою очередь, чем больше электронов перераспредели-
лось в пространстве, тем более эффективно экранирование затравочного потенциала φ0.
Приведем характерные значения радиуса экранирования в типичных случаях. В CdS при комнатной температуре и n0 = 1012 см-3 R = 5 * 10-4 см: при n0 =1014 см-3 R = 5 * 10-5 см.
Учтем теперь, что бегущая звуковая волна не стоит на месте, а распространяется по кристаллу, создавая электрическое поле, меняющееся в каждой точке кристалла с частотой звука ω². Поэтому возникает вопрос, за какое же время устанавливается статическая картина экранирования, описанная выше. Таким характерным временем является максвелловское время релаксации:
τ = ε/4πσ
Оно обратно пропорционально электропроводности σ, что естественно: ведь именно благодаря процессам электропроводности электроны проводимости могут перераспределяться в пространстве.
Если величина ωτ мала, то за период звука статическое экранирование успевает установиться почти полностью, и картина пространственного распределения электронов мало отличается от той, которая была бы в статическом случае. При этом, как мы видели, потенциал φ отличается от φ0 множителем (qR)2 [1 + (qR)2 ]-1. Такой же множитель должен появиться и в слагаемом, описывающем вклад в скорость звука за счет пьезоэлектрического эффекта:
ω = ω0 [1 + χ (qR)2 /2 (1 + (qR)2 )]
В обратном предельном случае, когда ωτ »1, экранирование не успевает установиться, и скорость звука в полупроводнике равна ωd.
2. ПОГЛОЩЕНИЕ И УСИЛЕНИЕ ЗВУКА
При распространении бегущей звуковой волны пространственное распределение электронов стремится следовать за пространственным распределением пьезоэлектрического потенциала. Соответственно переменные пьезоэлектрические поля порождают переменные электронные токи, которые и «подстраивают» распределение электронов к распределению потенциала. При протекании этих токов в проводнике должно выделяться джоулево тепло. В результате при распространении звука механическая энергия звуковой волны переходит в энергию беспорядочного теплового движения, т. е. происходит поглощение звука. Интенсивность поглощаемого звука изменяется по закону:
S (х) =S (0) ехр( - Гх),
где S(0) — интенсивность «на входе» кристалла. Величина Г называется коэффициентом поглощения звука.
Для отношения коэффициента поглощения звука Г к величине его волнового вектора q можно получить следующее выражение:
Г / q = χωτ/((1 + q2R2)2 + (ωτ) 2) (5)
Частотной зависимости этого выражения можно дать следующее наглядное объяснение.
Переменный ток, создаваемый пьезоэлектрическим почтем, вызывает перераспределение свободных зарядов. Перераспределенные заряды, в свою очередь, создают добавочное электрическое поле. Оно, как уже говорилось, направлено противоположно первоначальному электрическому, полю и, следовательно, приводит к уменьшению тока проводимости; τ и есть то время, за которое происходит перераспределение свободных зарядов. При статической деформации заряды перераспределяются и их поле компенсирует (экранирует) пьезоэлектрическое поле. таким образом, что ток становится равным нулю.
Если деформация измеряется с частотой ω, которая гораздо меньше 1/ τ, устанавливается почти полная компенсация. Точнее, поле объемных зарядов в случае переменной деформации, создаваемой звуком, отличается от статического поля на малую величину, пропорциональную ωτ. Поэтому в пьезоэлектрике протекает переменный ток, пропорциональный той же малой величине ωτ. Соответственно коэффициент Г, определяемый квадратом плотности тока, оказывается пропорциональным ω2.
В обратном предельном случае больших ωτ поле объемных зарядов за период звука вообще не успевает возникнуть. Поэтому при ωτ »1 коэффициент пропорциональности между плотностью тока и электрическим полем оказывается вообще независящим от частоты. Не зависит от частоты и коэффициент Г. Член (ωτ) 2 в знаменателе (5) и обеспечивает предельный переход от одного случая к другому. . Наконец, при qR » 1 коэффициент поглощения быстро убывает при увеличении частоты. Это связано с тем (уже отмечавшимся выше) обстоятельством, что звуковая волна, длина которой гораздо меньше радиуса экранирования, почти не вызывает перераспределения заряда даже в статическом случае.
Коэффициент поглощения достигает максимального значения при частоте ωm = ω0/R, т. е. когда длина волны равна 2πR; максимальное значение Гmo коэффициента поглощения равно χ/4R.
Характер частотной зависимости коэффициента поглощения определяется величиной ωmτ. Если ωmτ « 1, то максимум получается сравнительно острым.
В противоположном предельною случае коэффициент поглощения растет пропорционально ω2 вплоть до частот порядка 1/τ, после чего его рост становится очень медленным. Максимум в этом случае оказывается более пологим. При ω » ωm коэффициент поглощения во всех случаях убывает пропорционально ω2. Семейство Г(ω) при разных значениях ωmτ приведено на рис. 3.
Интересно проследить характер зависимости коэффициента поглощения Г от электронной концентрации n0. Обычно проводимость σ пропорциональна n0: σ = е n0μ, где μ - так называемая подвижность электронов. Таким образом, максвелловское время релаксации τ обратно пропорционально n0. Радиус экранирования R, как мы видели, обратно пропорционален √ n0 (см. (4)). Поэтому при малых концентрациях электронов коэффициент Г прямо пропорционален n0, а при больших - обратно пропорционален n0. Существует, таким образом, при любой частоте (о некоторая промежуточная концентрация nw, при которой коэффициент Г максимален.
Оценим коэффициент поглощения Г для какого-нибудь типичного случая. Рассмотрим, например, поперечный звук в CdS, скорость которого ω0 = 1,8 х 105 см/с. Пусть n0 = 5 х 1012 см-3, ω = 3 х 108 с-1, μ = 300 см2/Вс, χ = 0,036, ε = 9,4, Т=300 К. Тогда τ = 3,5 х 10-9 с, R= 1,6 х 10-4 см, q= 1,7 х 103 см-1, и мы получаем, что коэффициент Г составляет около 30 см-1. Это означает, что на расстоянии в 1/30 ~ 0,03 см интенсивность звука затухает в с раз, т. е. теория предсказывает сильное затухание уже при таких малых концентрации и частоте.