Атомная энергетика
Атомная энергетика
Принцип построения атомной энергетики.
1.1 Элементы ядерной физики
1.1.1 Строение атомов, ядер
|
представляют собой сложные комплексы взаимодейст-
вующих атомов. Молекулы - это наименьшие частицы
вещества, сохраняющие его свойства. В состав молекул
входят атомы различных химических элементов.
|
возникающими за счет обменов мезонами,
частицами меньшей массы.
| |||
| |||
Ядро элемента X обозначают как или X-A, например уран U-235 - ,
где Z - заряд ядра, равный числу протонов, определяющий атомный номер ядра, A - массовое число ядра, равное
суммарному числу протонов и нейтронов.
Ядра элементов с одинаковым числом протонов, но разным числом нейтронов называются изотопами (например, уран
имеет два изотопа U-235 и U-238); ядра при N=const, z=var - изобарами.
1.1.2 Ядерные реакции
Ядра водорода, протоны, а также нейтроны, электроны (бета-частицы) и одиночные ядра гелия (называемые альфа-частицами), могут существовать автономно вне ядерных структур. Такие ядра или иначе элементарные частицы, двигаясь в пространстве и приближаясь к ядрам на расстояния порядка поперечных размеров ядер, могут взаимодействовать с ядрами, как говорят участвовать в реакции. При этом частицы могут захватываться ядрами, либо после столкновения - менять направление движения, отдавать ядру часть кинетической энергии. Такие акты взаимодействия называются ядерными реакциями. Реакция без проникновения внуть ядра называется упругим рассеянием.
После захвата частицы составное ядро находится в возбужденном состоянии. "Освободиться" от возбуждения ядро может несколькими способами - испустить какую-либо другую частицу и гамма-квант, либо разделиться на две неравные части. Соответственно конечным результатам различают реакции - захвата, неупругого рассеяния, деления, ядерного превращения с испусканием протона или альфа-частицы.
Дополнительная энергия, освобождаемая при ядерных превращениях, часто имеет вид потоков гамма-квантов.
Вероятность реакции характеризуется величиной "поперечного сечения" реакции данного типа.
1.1.3 Деление ядер
|
нейтронов. При этом испускаются новые частицы
и освобождается энергия связи ядра, передаваемая
осколкам деления. Это фундаментальное явление
было открыто в конце 30-ых годов немецкими уче-
ными Ганом и Штрасманом, что заложило основу
для практического использования ядерной энергии.
Ядра тяжелых элементов - урана, плутония и некоторых других интенсивно поглощают тепловые нейтроны. После акта захвата нейтрона, тяжелое ядро с вероятностью ~0,8 делится на две неравные по массе части, называемые осколками или продуктами деления. При этом испускаются - быстрые нейтроны/ (в среднем около 2,5 нейтронов на каждый акт деления), отрицательно заряженные бета-частиц и нейтральные гамма-кванты, а энергия связи частиц в ядре преобразуется в кинетическую энергию осколков деления, нейтронов и других частиц. Эта энергия затем расходуется на тепловое возбуждение составляющих вещество атомов и молекул, т.е. на разогревание окружающего вещества.
После акта деления ядер рожденные при делении осколки ядер, будучи нестабильными, претерпевают ряд последовательных радиоактивных превращений и с некоторым запаздыванием испускают "запаздывающие" нейтроны, большое число альфа, бета и гамма-частиц. С другой стороны некоторые осколки обладают способностью интенсивно поглощать нейтроны.
1.1.4 Ядерный реактор
Ядерный реактор - это техническая установка, в которой осуществляется самоподдерживающаяся цепная реакция деления тяжелых ядер с освобождением ядерной энергии. Ядерный реактор состоит из активной зоны и отражателя, размещенных в защитном корпусе.Активная зона содержит ядерное топливо в виде топливной композиции в защитном покрытии и замедлитель. Топливные элементы обычно имеют вид тонких стержней. Они собраны в пучки и заключены в чехлы. Такие сборные композиции называются сборками или кассетами.
Вдоль топливных элементов двигается теплоноситель, который воспринимает тепло ядерных превращений. Нагретый в активной зоне теплоноситель двигается по контуру циркуляции за счет работы насосов либо под действием сил Архимеда и, проходя через теплообменник, либо парогенератор, отдает тепло теплоносителю внешнего контура.
Перенос тепла и движения его носителей можно представить в виде простой схемы:
|
2.Теплообменник, парогенератор
3.Паротурбинная установка
4.Генератор
5.Конденсатор
6.Насос
2.1 Проблемы развития энергетики
Развитие индустриального общества опирается на постоянно растущий уровень производства и потребления
различных видов энергии.
Как известно, в основе производства тепловой и электрической энергии лежит процесс сжигания ископаемых
энергоресурсов -
· угля
· нефти
· газа
а в атомной энергетике - деление ядер атомов урана и плутония при поглощении нейтронов.
Масштаб добычи и расходования ископаемых энергоресурсов, металлов, потребления воды, воздуха для производства необходимого человечеству количества энергии огромен, а запасы ресурсов, увы, ограничены. Особенно остро стоит проблема быстрого исчерпания запасов органических природных энергоресурсов.
|