Волоконно-оптические линии связи
Страница 9
На магистральных линиях было бы хорошо использовать усилитель света. К сожалению, такого у нас пока не имеется. Принцип усиления света (прежде всего это принцип лазера: вынужденное излучение при возбуждении) известен, но еще не готов к техническому воплощению.
Таким образом, и в промежуточном усилителе остается задача преобразования и регенерации электрического сигнала (усиление или восстановление нужной формы импульса при двойных бинарных сигналах). Этот восстановленный электрический сигнал вторично используют для управления лазером или светоизлучающим диодом, который теперь излучает усиленный световой сигнал.
В оптических системах связи, в которых на выходе каждого отдельного световода должен быть установлен чувствительный фотоприемник, вводятся два прибора, которые могут быть выполнены методом микроэлектронной технологии. Речь идет о p-i-n фотодиоде и лавинном фотодиоде. Оба используют внутренний фотоэффект, который проявляется в этом специальном случае непосредственно в окрестностях р-n перехода.
Абоненты — это не только мы сами или наши соседи, с которыми мы хотим общаться дома или на работе. Это все увеличивающееся число машин, выдающих и принимающих информацию.
В сети связи, только распределяющей информацию (например, радио- или телевизионной), абонент расположен на большой линии коллективного пользования, из которой он получает для себя необходимую информацию. В телефонной сети, которая передает разговоры, каждый абонент имеет до любого места (в основном до конечной коммутационной станции) свою собственную линию. Только после этого несколько, а затем множество сигналов абонентов объединяются в пачку и передаются совместно, чтобы на конце вновь разъединиться на отдельные линии, которые ведут к желаемым собеседникам.
Еще в середине 70-х годов существовала уверенность в том, что эта часть сети, состоящая из отдельных проводников, должна остаться металлической из экономических соображений. Впоследствии это мнение изменилось.
Здесь, прежде всего, имеем дело с видом материала. Около 70% меди, расходуемой на кабели связи, приходится на абонентские сети, хотя диаметры проводников выбраны настолько малыми, насколько это возможно. Если бы в будущем отрезки линий, передающих сигналы, выполнялись на оптических элементах, то можно было бы сэкономить только лишь треть затрат на медь, а абонентские сети необходимо было бы опять строить в каждом квартале новостроек.
Дальнейшим важным направлением являются постоянно растущие информационные потоки в промышленности, хозяйстве, а также в быту.
Радио- и телевизионная связь станут в ближайшем будущем встречаться в каждом доме, и необходимость устройства абонентских вводов во многих странах превышает их экономические возможности. Только в учреждения и на заводы в ближайшие годы придут новые службы, польза и рентабельность которых сегодня общепризнанны: телекопирование, конторский телетайп, электронная почта, передача данных в самом широком смысле слова, телеметрия, телеуправление и мониторное оборудование для различных технических устройств. Для индивидуальных абонентов техника также движется вперед. Уже испытываются известные во многих странах мира способы, с помощью которых абонент сможет выбрать тексты, таблицы, диаграммы и воспроизвести их на собственном экране.
Абонентские линии, которые мы сегодня прокладываем, должны быть подготовлены для многих потребностей последующего десятилетия. Нынешнюю систему электрической связи можно использовать только в качестве речевого канала с небольшой полосой пропускания. Такая связь пригодна для конторского телетайпа, а также для передачи данных. Уже при телекопировании необходимо длительное время копирования — в лучшем случае свыше одной минуты на каждую страницу форматаA4, и каждое повышение скорости требует увеличения полосы пропускания. До конца 80-х годов — таков прогноз британского ведомства связи — в Англии до 50 % почты должно передаваться электронным образом.
Но окончательно необходимо будет отказаться от сегодняшнего абонентского симметричного кабеля с медными проводниками, если потребуется хотя бы одноединственное движущееся изображение. Тогда будет необходим дорогой коаксиальный кабель или световод.
Такой прогноз развития в будущем является основой, которую учитывают при создании широкополосной связи каждой квартиры, по крайней мере с близлежащей коммутационной станцией. Как должна выглядеть техника оптической связи будущего, в частности упомянутая сеть оптической связи, какие и сколько различных сигналов должно быть в этой многоцелевой абонентской сети и как они должны будут передаваться, никто еще сегодня конкретно и окончательно сказать не может. Хотя некоторые рабочие положения сформулированы. Сообразно с ними телефонная связь (разговор и вызывной сигнал) должна осуществляться в обоих направлениях, а кроме того, должен передаваться и телевизионный сигнал. В соответствии с этим каждый абонент получает отдельную оптическую широкополосную линию, к которой, прежде всего, подключен его телефон и затем, возможно, видеотелефон и другие высокоскоростные устройства.
Ряд вопросов при этом останется открытым. Один из них — энергоснабжение аппарата абонента. Телефон, питаемый сегодня через сигнальные проводники станционного источника питания, в дальнейшем не будет иметь электрической связи с коммутационной станцией. Таким образом, он должен будет получать энергию от местной силовой сети. К этой идее привыкли. Обычно электрическая передающая техника будущего ставит те же требования автономного электропитания, правда, по другим причинам. При этом электрическая развязка (абонентов и коммутационной станции), которая обусловлена применением световодной техники, окажется целесообразной с экономической точки зрения.
Оптическая абонентская сеть, широкополосный аппарат абонента в каждой квартире более не являются утопией.
Приложение 1
При прохождении света из оптически менее плотной среды в более плотную, например, из воздуха в стекло или воду, u1 > u2 и согласно закону преломления показатель преломления n > 1.
sin a / sin b = u1 / u2 = n
Поэтому a > b (рис. _): преломленный луч приближается к перпендикуляру к границе раздела сред. Если направить луч света в обратном направлении – из оптически более плотной среды в оптически менее плотную вдоль бывшего преломленного луча (рис. _), то закон преломления запишется так:
sin a / sin b = u2 / u1 = 1 / n
Преломленный луч по выходе из более плотной оптической среды пойдет по линии бывшего падающего луча, поэтому a < b, т. е. преломленный луч отклоняется от перпендикуляра. По мере увеличения угла a угол преломления b растет, оставаясь все время больше угла a. Наконец при некотором угле падения значение угла преломления приблизится к 90° и преломленный луч пойдет почти по границе раздела сред (рис. _). Наибольшему возможному углу преломления b = 90° соответствует угол падения a0. Попробуем сообразить, что произойдет при a > a0. При падении света на границу двух сред световой луч, как об этом уже упоминалось, частично преломляется, а частично отражается от нее. При a > a0 преломление света невозможно. Значит, луч должен полностью отразиться. Это явление и называется полным отражением света.
Полное отражение используют в так называемой волоконной оптике для передачи света и изображения по пучкам прозрачных гибких волокон – световодов. Световод представляет собой стеклянное волокно цилиндрической формы, покрытое оболочкой из прозрачного материала с меньшим, чем у волокна, показателем преломления, За счет многократного полного отражения свет может быть направлен по любому (прямому или изогнутому) пути. Волокна набираются в жгуты. При этом по каждому из волокон передается какой-нибудь элемент изображения. Жгуты из волокон используются, например, в медицине для исследования внутренних органов.