Азбука живой материи. Белки
Страница 3
Часто сама пространственная организация полипептидной цепи как раз' и нужна для того, чтобы сосредоточить в определённых точках пространства необходимый для выполнения той или иной функции набор боковых цепей. Пожалуй, ни один процесс в живом организме не проходит без участия белков.
В ЧЁМ СЕКРЕТ ФЕРМЕНТОВ
Все химические реакции, протекающие в клетке, происходят благодаря особому классу белков — ферментам. Это белки-катализаторы. У них есть свой секрет, который позволяет им работать гораздо эффективнее других катализаторов, ускоряя реакции в миллиарды раз.
Предположим, что несколько приятелей никак не могут встретиться. Но стоило одному из них пригласить друзей на день рождения, как результат не заставил себя ждать: все оказались в одном месте в назначенное время.
Чтобы встреча состоялась, понадобилось подтолкнуть друзей к контакту. То же самое делает и фермент. В его молекуле есть так называемые цгнтры связывания. В них расположены привлекательные для определённого типа химических соединений (и только для них!) «уютные кресла» — R-группы, связывающие какие-то участки молекул реагирующих веществ. Например, если одна из молекул имеет неполярную группу, в центре связывания находятся гидрофобные боковые цепи. Если же в молекуле есть отрицательный заряд, его будет поджидать в молекуле фермента R-группа с положительным зарядом.
В результате обе молекулы реагентов связываются с ферментом и оказываются в непосредственной близости друг от друга. Мало того, те их группы, которые должны вступить в химическую реакцию, сориентированы в пространстве нужным для реакции образом. Теперь за дело принимаются боковые цепи фермента, играющие роль катализаторов. В ферменте все «продумано» таким образом, что R-группы-катализаторы тоже расположены вблизи от места событий, которое называют активным центром. А после завершения реакции фермент «отпускает на волю» молекулы-продукты (см. статью «Ферменты — на все руки мастера»).
ОТКУДА БЕРЁТСЯ ИММУНИТЕТ
Белки выполняют в организме множество функций; они, например, защищают клетки от нежелательных вторжений, предохраняют их от повреждений. Специальные белки — антитела обладают способностью распознавать проникшие в клетки бактерии, вирусы, чужеродные полимерные молекулы и нейтрализовывать их.
У высших позвоночных от чужеродных частиц организм защищает иммунная система. Она устроена так, что организм, в который вторглись такие «агрессоры» — антигены, начинает вырабатывать антитела. Молекула антитела прочно связывается с антигеном: у антител, как и у ферментов, тоже есть центры связывания. Боковые цепи аминокислот расположены в центрах таким образом, что антиген, попавший в эту ловушку, уже не сможет вырваться из «железных лап» антитела. После связывания с антителом враг выдворяется за пределы организма.
Можно ввести в организм небольшое количество некоторых полимерных молекул, входящих в состав бактерий или вирусов-возбудителей какой-либо инфекционной болезни.
В организме немедленно появятся соответствующие антитела. Теперь попавший в кровь или лимфу «настоящий» болезнетворный микроб тотчас же подвергнется атаке этих антител, и болезнь будет побеждена. Такой способ борьбы с инфекцией есть не что иное, как нелюбимая многими прививка. Благодаря ей организм приобретает иммунитет к инфекционным болезням.
ДЛЯ ЧЕГО В ГЕМОГЛОБИНЕ ЖЕЛЕЗО
В природе существуют белки, в которых помимо аминокислот содержатся другие химические компоненты, такие, как липиды, сахара, ионы металлов. Обычно эти компоненты играют важную роль при выполнении белком его биологической функции. Так, перенос молекул и ионов из одного органа в другой осуществляют транспортные белки плазмы крови. Белок гемоглобин (от греч. «гема» — «кровь» и лат. globus — «шар», «шарик»), содержащийся в кровяных клетках — эритроцитах (от греч. «эритрос» — «красный» и «китос» — «клетка»), доставляет кислород от лёгких к тканям. В молекуле гемоглобина есть комплекс иона железа Fe24" со сложной органической молекулой, называемый гемам. Гемоглобин состоит из четырёх белковых субъединиц, и каждая из них содержит по одному гему.
В связывании кислорода в лёгких принимает участие непосредственно ион железа. Как только к нему хотя бы в одной из субъединиц присоединяется кислород, сам ион тут же чуть-чуть меняет своё расположение в молекуле белка. Движение железа «провоцирует» движение всей аминокислотной цепочки данной субъединицы, которая слегка трансформирует свою третичную структуру. Другая субъединица, ещё не присоединившая кислород, «чувствует», что произошло с соседкой. Её структура тоже начинает меняться. В итоге вторая субъединица связывает кислород легче, чем первая. Присоединение кислорода к третьей и четвёртой субъединицам происходит с ещё меньшими трудностями. Как видно, субъединицы помогают друг другу в работе. Для этого-то гемоглобину и нужна четвертичная структура. Оксид углерода СО (в просторечии угарный газ) связывается с железом в геме в сотни раз прочнее кислорода. Угарный газ смертельно опасен для человека, поскольку лишает гемоглобин возможности присоединять кислород.
А ЕЩЁ БЕЛКИ .
.Служат питательными веществами. В семенах многих растений (пшеницы, кукурузы, риса и др.) содержатся пищевые белки. К ним относятся также альбумин — основной компонент яичного белка и казеин — главный белок молока. При переваривании в организме человека белковой пищи происходит гидролиз пептидных связей. Белки «разбираются» на отдельные аминокислоты, из которых организм в дальнейшем «строит» новые пептиды или использует для получения энергии. Отсюда и название:
греческое слово «пептос» означает «переваренный». Интересно, что гидролизом пептидной связи управляют тоже белки — ферменты.
.Участвуют в регуляции клеточной и физиологической активности. К подобным белкам относятся многие гормоны (от греч. «гормао» — «побуждаю»), такие, как инсулин, регулирующий обмен глюкозы, и гормон роста.
.Наделяют организм способностью изменять форму и передвигаться. За это отвечают белки актин и миозин, из которых построены мышцы.
.Выполняют опорную и защитную функции, скрепляя биологические структуры и придавая им прочность. Кожа представляет собой почти чистый белок коллаген, а волосы, ногти и перья состоят из прочного нерастворимого белка кератина.
ЧТО ЗАПИСАНО В ГЕНАХ
Последовательность аминокислот в белках кодируется генами, которые хранятся и передаются по наследству с помощью молекул ДНК (см. статьи «Хранитель наследственной информации. ДНК» и «Экспрессия генов»). Пространственную структуру белка задаёт именно порядок расположения аминокислот. Получается, что не только первичная, но и вторичная, третичная и четвертичная структуры белков составляют содержание наследственной информации. Следовательно, и выполняемые белками функции запрограммированы генетически. Громадный перечень этих функций позволяет белкам по праву называться главными молекулами жизни. Поэтому сведения о белках и есть то бесценное сокровище, которое передаётся в природе от поколения к поколению.
Интерес человека к этим органическим соединениям с каждым годом только увеличивается. Сегодня учёные уже расшифровали структуру многих белковых молекул. Они выясняют функции самых разных белков, пытаются определить взаимосвязь функций со структурой. Установление сходства и различий у белков, выполняющих аналогичные функции у разных живых организмов, позволяет глубже проникать в тайны эволюции.
АМИНОКИСЛОТЫ — ПОКАЗАТЕЛИ ВОЗРАСТА
D- и L-формы аминокислот обладают способностью очень медленно превращаться друг в друга. За определённый (весьма длительный) период времени чистая D- или I-форма может стать смесью равных количеств обеих форм. Такая смесь называется раиемагом, а сам процесс —раие-мизаиией. Скорость рацемизации зависит от температуры и типа аминокислоты. Данное свойство можно использовать для определения возраста ископаемых остатков организмов, а при необходимости — и живых существ. Например, в белке дентина (дентин — костная ткань зубов) 1-ас-парагиновая кислота самопроизвольно раиемизуется со скоростью 0,1 % в год. У детей в период формирования зубов в дентине содержится только 1-аспарагиновая кислота. Дентин выделяют из зуба и определяют В нём содержание 0-формы. Результаты теста достаточно точны. Так, для 97-летней женщины, возраст которой был документально засвидетельствован, тест показал возраст 99 лет. Данные исследований, выполненных на ископаемых остатках доисторических животных — слонов, дельфинов, медведей, — хорошо согласуются с результатами датирования, полученными радионуклидным методом.