Азбука живой материи. Белки

Азбука живой материи. Белки

Более 4 млрд лет назад на Земле из маленьких неорганических молекул непостижимым образом возникли белки, ставшие строительными бло­ками живых организмов. Своим бес­конечным разнообразием всё живое обязано именно уникальным молеку­лам белка, и иные формы жизни во Вселенной науке пока неизвестны.

Белки, или протеины (от греч. «протос» — «первый»), — это природ­ные органические соединения, кото­рые обеспечивают все жизненные процессы любого организма. Из бел­ков построены хрусталик глаза и па­утина, панцирь черепахи и ядовитые вещества грибов . С помощью белков мы перевариваем пищу и боремся с болезнями. Благодаря особым белкам по ночам светятся светлячки, а в глу­бинах океана мерцают таинствен­ным светом медузы.

Белковых молекул в живой клетке во много раз больше, чем всех других (кроме воды, разумеется!). Учёные вы­яснили, что у большинства организ­мов белки составляют более полови­ны их сухой массы. И разнообразие видов белков очень велико — в одной клетке такого маленького организма, как бактерия Escherichia сой' (см. до­полнительный очерк «Объект иссле­дования — прокариоты»), насчиты­вается около 3 тыс. различных белков.

Впервые белок был выделен (в ви­де клейковины) в 1728 г. итальянцем Якопо Бартоломео Беккари (1682— 1766) из пшеничной муки. Это собы­тие принято считать рождением хи­мии белка. С тех пор почти за три столетия из природных источников получены тысячи различных белков и исследованы их свойства.

БИОЛОГИЧЕСКИЕ «БУСЫ»

Молекула белка очень длинная. Хими­ки называют такие молекулы поли­мерными (от греч. «поли» — «много» и «мерос» — «часть», «доля»). Действи­тельно, длинная молекула полимера состоит из множества маленьких мо­лекул, связанных друг с другом. Так нанизываются на нить бусинки в ожерелье. В полимерах роль нити иг­рают химические связи между бусин­ками-молекулами.

Секрет белков спрятан в особен­ностях этих самых бусинок. Боль­шинство полимеров не принимает устойчивой формы в пространстве, уподобляясь тем же бусам, у которых и не может быть пространственной структуры: повесишь их на шею — они примут форму кольца или овала, положишь в коробку — свернутся в клубок неопределённой формы. А те­перь представим себе, что некоторые бусинки могут «слипаться» друг с другом. Например, красные притяги­ваются к жёлтым. Тогда вся цепочка примет определённую форму, обязан­ную своим существованием «слипа-нию» жёлтых и красных бусинок

Нечто подобное происходит и в белках. Отдельные маленькие моле­кулы, входящие в состав белка, обла­дают способностью «слипаться», так как между ними действуют силы при­тяжения. В результате у любой белко­вой цепи есть характерная только для неё пространственная структура. Именно она определяет чудесные свойства белков. Без такой структуры они не могли бы выполнять те функ­ции, которые осуществляют в живой клетке.

При длительном кипячении бел­ков в присутствии сильных кислот или щелочей белковые цепи распада­ются на составляющие их молекулы,

называемые аминокислотами. Амино­кислоты — это и есть те «бусинки», из которых состоит белок, и устроены они сравнительно просто.

КАК УСТРОЕНА АМИНОКИСЛОТА

В каждой молекуле аминокислоты есть атом углерода, связанный с четырьмя заместителями. Один из них — атом водорода, второй — кар­боксильная группа —СООН. Она лег­ко «отпускает на волю» ион водоро­да Н+, благодаря чему в названии аминокислот и присутствует слово «кислота». Третий заместитель — ами­ногруппа —NH2 и, наконец, четвёр­тый заместитель — группа атомов, ко­торую в общем случае обозначают R. У всех аминокислот R-группы разные, и каждая из них играет свою, очень важную роль.

Свойства «бусинок», отличающие одну аминокислоту от другой, скры­ты в R-группах (их ещё называют бо­ковыми цепями). Что же касается группы —СООН, то химики-органи­ки относятся к ней с большим почте­нием: всем другим атомам углерода в молекуле даются обозначения в зави­симости от степени их удалённости от карбоксильной группы. Ближай­ший к ней атом именуют а-атомом, второй — в-атомом, следующий — у-атомом и т. д. Атом углерода в ами­нокислотах, который находится бли­же всех к карбоксильной группе, т. е. а-атом, связан также с аминогруппой, поэтому природные аминокислоты, входящие в состав белка, называют а-аминокислотами.

В природе встречаются также ами­нокислоты, в которых NH^-группа связана с более отдалёнными от кар­боксильной группы атомами углеро­да. Однако для построения белков природа выбрала именно а-аминокислоты. Это обусловлено прежде всего тем, что только а-аминокислоты, соединённые в длинные цепи, способны обеспечить достаточную прочность и устойчивость структуры больших белковых молекул.

Число а-аминокислот, различа­ющихся R-группой, велико. Но чаще других в белках встречается всего 20 разных аминокислот. Их можно рас­сматривать как алфавит «языка» бел­ковой молекулы. Химики называют эти главные аминокислоты стандарт­ными, основными или нормальными. Условно основные аминокислоты де­лят на четыре класса.

В первый входят аминокислоты с неполярными боковыми цепями. Во второй — аминокислоты, со­держащие полярную группу. Следую­щие два составляют аминокислоты с боковыми цепями, которые могут заряжаться положительно (они объе­диняются в третий класс) или отрица­тельно (четвёртый). Например, диссо­циация карбоксильной группы даёт анион — СОО-, а протонирование ато­ма азота — катион, например —NH3+. Боковые цепи аспарагиновой и глута-миновой кислот имеют ещё по одной карбоксильной группе —СООН, кото­рая при значениях рН, характерных для живой клетки (рН = 7), расстаётся с ионом водорода (Н+) и приобрета­ет отрицательный заряд. Боковые це­пи аминокислот лизина, аргинина и гистидина заряжены положительно, поскольку у них есть атомы азота, ко­торые, наоборот, могут ион водорода присоединять.

Каждая а-аминокислота (кроме глицина) в зависимости от взаимно­го расположения четырёх заместите­лей может существовать в двух фор­мах. Они отличаются друг от друга, как предмет от своего зеркального от­ражения или как правая рука от ле­вой. Такие соединения получили название хоральных (от грен. «хир» — «рука»). Хиральные молекулы открыл в 1848 г. великий французский учё­ный Луи Пастер. Два типа оптических изомеров органических молекул по­лучили названия Д-форма (от лат. dexter — «правый») и Z-форма (от лат. laevus — «левый»). Кстати, одно из названий других хиральных моле­кул — глюкозы и фруктозы — декст­роза и левулоза. Примечательно, что в состав белков входят только Z-аминокислоты, и вся белковая жизнь на Земле — «левая».

Для нормальной жизнедеятельно­сти организм нуждается в полном на­боре из 20 основных a-Z-аминокислот. Но одни из них могут быть синтезиро­ваны в клетках самого организма, а другие — должны поступать в готовом виде из пищевых продуктов. В пер­вом случае аминокислоты называют заменимыми, а во втором — незамени­мыми. Набор последних для разных организмов различен. Например, для белой крысы незаменимыми являют­ся 10 аминокислот, а для молочнокислых бактерий — 16. Растения могут са­мостоятельно синтезировать самые разнообразные аминокислоты, созда­вать такие, которые не встречаются в белках.

Для удобства 20 главных амино­кислот обозначают символами, ис­пользуя одну или первые три буквы русского или английского названия аминокислоты, например аланин — Ала или А, глицин — Гли или G.

ЧТО ТАКОЕ ПЕПТИД

Полимерная молекула белка образует­ся при соединении в длинную цепоч­ку бусинок-аминокислот. Они нани­зываются на нить химических связей благодаря имеющимся у всех амино­кислот амино- и карбоксильной груп­пам, присоединённым к а-атому угле­рода.

Образующиеся в результате такой реакции соединения называются пеп-тидами; (—СО—NH—группировка в них — это пептидная группа, а связь между атомами углерода и азота — пептидная связь (её ещё называют амидной). Соединяя аминокислоты посредством пептидных связей, мож­но получить пептиды, состоящие из остатков очень многих аминокислот. Такие соединения получили название полипептиды. Полипептидное стро­ение белковой молекулы доказал в 1902 г. немецкий химик Эмиль Гер­ман Фишер.