Газовая хроматография

Страница 4

Носители неподвижных жидких фаз. Твердые носители для диспергирования неподвижной жидкой фазы в виде однородной тонкой пленки должны быть механически прочными с умеренной удельной поверхностью (20м2/г), небольшим и одинаковым размером частиц, а также быть достаточно инертными, чтобы адсорбция на поверхности раздела твердой и газообразной фаз была минимальной. Самая низкая адсорбция наблюдается на носителях из силанизированного хромосорба, стеклянных гранул и флуоропака (фторуглеродный полимер). Кроме того, твердые носители не должны реагировать на повышение температуры и должны легко смачиваться жидкой фазой. В газовой хроматографии хелатов в качестве твердого носителя чаще всего используют силанизированные белые диатомитовые носители — диатомитовый кремнезем, или кизельгур. Диатомит — это микроаморф­ный, содержащий воду, диоксид кремния. К таким носителям относят хромосорб W, газохром Q, хроматон N и др. Кроме того, используют стеклянные шарики и тефлон.

Химически связанные фазы. Часто используют модифицированные носители, ковалентно - связанные с жидкой фазой. При этом стационар­ная жидкая фаза более прочно удерживается на поверхности даже при самых высоких температурах колонки. Например, диатомитовый носи­тель обрабатывают хлорсиланом с длинноцепочечным заместителем, обладающим определенной полярностью. Химически связанная непод­вижная фаза более эффективна.

Аппаратурное оформление процесса

Газовая хроматография—наиболее разработанный в аппаратур­ном оформлении хроматографический метод. Прибор для газохроматографического разделения и полу­чения хроматограммы назы­вается газовым хроматографом. Схема установки наиболее простого газового хроматографа приведена на рис. 5. Она состоит из газового баллона, содержащего подвижную инертную фазу (газ-носитель), чаще всего гелий, азот, аргон и др. С помощью редуктора, уменьшающего давление газа до необходимого, газ-носи­тель поступает в колонку, представляющую собой трубку, заполненную сорбентом или другим хроматографическим материалом, играющим роль неподвижной фазы.

Рис.5 Схема работы газового хроматографа:

1 – баллон высокого давления с газом-носителем; 2 – стабилизатор потока; 3 и 3 ' – манометры; 4 – хроматографическая колонка; 5 – устройство для ввода пробы; 6 – термостат; 7 – детектор; 8 – самописец; 9 – расходомер

Газ-носитель подается из баллона под определенным постоянным давлением, кото­рое устанавливается при помощи специальных кла­панов. Скорость потока в зависимо­сти от размера колонки, как прави­ло, составляет 20—50 мл •мин'1. Пробу перед вводом в колонку дозиру­ют, Жидкие пробы вводят специальными инжекционными шприцами (0,5—20 мкл) в поток газа-носителя (в испаритель) через мембрану из силиконовой са­моуплотняющейся резины. Для введения твердых проб используют специальные при­способления. Проба должна испаряться практически мгновенно, иначе пики на хрома­тограмме расширяются и точность анализа снижается. Поэтому дозирующее устрой­ство хрома­тографа снабжено нагревателем, что позволяет поддерживать темпера­туру дозатора примерно на 50°С выше, чем температура колонки.

Применяют разделительные колонки двух типов: в ~80% случаев спиральные, или насадочные (набивные), а также капиллярные. Спи­ральные колонки диаметром 2—6мм и длиной 0,5—20 м изготавливают из боросиликатного стекла, тефлона или ме­талла. В колонки поме­щают стационарную фазу: в газоадсорбционной хроматографии это адсорбент, а в газожидкостной хроматографии — носитель с тонким слоем жидкой фазы. Правильно подготовленную колонку можно использовать для нескольких сотен опре­делений. Капиллярные колонки разделя­ют по способу фиксации неподвижной фазы на два типа: колонки с тонкой пленкой неподвижной жидкой фазы (0,01—1 мкм) непосредственно на внут­ренней поверхности капилляров и тонкослойные колонки, на внутреннюю повер­хность которых нанесен пористый слой (5—10 мкм) твердого веще­ства, выпол­няющего функцию сорбента или носите­ля неподвижной жидкой фазы. Ка­пиллярные колонки изготавливают из различных материалов - нержавеющей стали, меди, дедерона, стекла; диаметр капилляров 0,2—0,5 мм, длина от 10 до 100 м.

Температура колонок определяется главным образом летучестью пробы и может изме­няться в пределах от - 1960С (температура кипения жидкого азота) до 3500 С. Темпера­туру колонки контролируют с точ­ностью до нескольких десятых градуса и поддержи­вают постоянной с помощью термостата. Прибор дает возможность в процессе хрома­тографирования повышать температуру с постоянной скоростью (линей­ное програм­мирование температуры).

Для непрерывного измерения концентрации разделяемых веществ в газе-носителе в комплекс газового хроматографа входит несколько различных детекторов.

Детектор по теплопроводности (катарометр). Универсальный детек­тор наиболее широко используется в ГХ. В полость металлического блока помещена спираль из металла с высоким термическим сопротив­лением (Pt, W,их сплавы, Ni) (рис. 6).

Через спираль проходит постоянный ток, в результате чего она нагревается. Если спираль обмывает чистый газ-носитель, спираль теряет постоянное количество теплоты и ее температура постоянна. Если состав газа-носителя содер­жит примеси, то меняется теплопроводность газа и

соответственно температура спирали. Это приводит к из­менению сопротивления нити, которое измеряют с помо­щью моста Уитстона (рис. 7). Сравнитель­ный поток газа-носителя омывает нити ячеек R1 и R2 а газ, поступа­ющий из/колонки, омывает нити измерительных ячеек С1 и С2. Если у четырех нитей одинаковая температура (одинаковое сопротивление), мост нахо­дится в равновесии. При изменении состава газа, выходящего из колонки, сопротивле­ние нитей ячеек С1 и С2 меняется, равновесие нарушается и генерируется выходной сигнал.

На чувствительность катарометра сильно влияет теплопроводность газа-носителя, поэтому нужно использовать газы-носители с максимально возможной теплопроводностью, например гелий или водород.

Детектор электронного захвата представляет собой ячейку с двумя электродами (ионизационная камера), в которую поступает газ-носитель, прошедший через хроматографическую колон­ку (рис. 8). В камере он облучается постоянным потоком b-элек­тронов, поскольку один из электродов изготовлен из материала, яв­ляющегося источником излучения (63Ni, 3Н, 226Ra). Наиболее удобный источник излучения — титановая фольга, содержащая адсорбированный тритий. В детекторе происходит реакция свободных элект­ронов с молекулами оп­ределенных типов с образованием стабильных анионов: АВ + е = АВ- ± энергия, АВ+е=А + В- ± энергия. В ионизо­ванном газе-носителе (N2, Не) в качестве отрицательно заря­женных частиц присутствуют только электроны. В присутст­вии соединения, которое может захватывать электроны, иони­зационный ток детектора уменьшается. Этот детектор дает от­клик на соединения, содержащие галогены, фосфор, серу, нит­раты, свинец, кислород; на большинство углеводородов он не реагирует.