Анализ экономических задач симплексным методом

Страница 2

Если свободные переменные приравнять нулю, а базис­ные переменные при этом примут неотрицательные значе­ния, то полученное частное решение системы (8) назы­вают опорным решением (планом).

Теорема. Если система векторов содер­жит m линейно независимых векторов , то допустимый план (10) является крайней точкой многогранника планов.

Теорема. Если ЗЛП имеет решение, то целевая функция достигает экстремального значения хотя бы в одной из крайних точек многогранника решений. Если же целевая функция достигает экстремального значения бо­лее чем в одной крайней точке, то она достигает того же значения в любой точке, являющейся их выпуклой ли­нейной комбинацией.

§2.Графический способ решения ЗЛП.

Геометрическая интерпретация экономических задач дает возможность наглядно представить, их структуру, выявить особенности и открывает пути исследования бо­лее сложных свойств. ЗЛП с двумя переменными всегда можно решить графически. Однако уже в трехмерном пространстве такое решение усложняется, а в простран­ствах, размерность которых больше трех, графическое решение, вообще говоря, невозможно. Случай двух переменных не имеет особого практиче­ского значения, однако его рассмотрение проясняет свой­ства ОЗЛП, приводит к идее ее решения, делает геомет­рически наглядными способы решения и пути их практи­ческой реализации.

Пусть дана задача

(11)

(12)

(13)

Дадим геометрическую интерпретацию элементов этой задачи. Каждое из ограничений (12), (13) задает на плоскости некоторую полуплоскость. Полу­плоскость — выпуклое множество. Но пересечение любого числа выпуклых множеств является выпуклым множест­вом. Отсюда следует, что область допустимых решений задачи (11) — (13) есть выпуклое множество.

Перейдем к геометрической интерпретации целевой функции. Пусть область допустимых решений ЗЛП — не­пустое множество, например многоугольник .

Выберем произвольное значение целевой функ­ции . Получим . Это уравнение пря­мой линии. В точках прямой NМ целевая функция сохра­няет одно и то же постоянное значение . Считая в ра­венстве (11) параметром, получим уравнение семей­ства параллельных прямых, называемых линиями уровня целевой функции (линиями постоянного значения).

Найдём частные производные целевой функции по и

(14)

(15)

Частная производная (14) ((15)) функции пока­зывает скорость ее возрастания вдоль данной оси. Следо­вательно, и — скорости возрастания соответст­венно вдоль осей и . Вектор называ­ется градиентом функции. Он показывает направление наискорейшего возрастания целевой функции:

Вектор — указывает направление наискорейшего убывания целевой функции. Его называют антигра­диентом.

Вектор перпендикулярен к прямым семейства

Из геометрической интерпретации элементов ЗЛП вы­текает следующий порядок ее графического решения.

1. С учетом системы ограничений строим область до­пустимых решений

2. Строим вектор наискорейшего возра­стания целевой функции — вектор градиентного направ­ления.

3. Проводим произвольную линию уровня

4. При решении задачи на максимум перемещаем ли­нию уровня в направлении вектора так, чтобы она касалась области допустимых решений в ее крайнем по­ложении (крайней точке). В случае решения задачи на минимум линию уровня перемещают в антиградиентном направлении

5. Определяем оптимальный план и экстре­мальное значение целевой функции .

§3.Симплексный метод.

Общая идея симплексного метода (ме­тода последовательного улучшения плана) для решения ЗЛП состоит

1) умение находить начальный опорный план;

2) наличие признака оптимальности опорного пла­на;

3) умение переходить к нехудшему опорному плану.

Пусть ЗЛП представлена системой ограничений в каноническом виде:

.

Говорят, что ограничение ЗЛП имеет предпочтительный вид, если при неотрицательной правой части левая часть ограничений содержит переменную, входящую с коэффициентом, равным единице, а в остальные ограничения равенства - с коэффициентом, равным нулю.

Пусть система ограничений имеет вид

Сведем задачу к каноническому виду. Для этого прибавим к левым частям неравенств дополнительные переменные . Получим систему, эквивалентную исходной:

,

которая имеет предпочтительный вид

.

В целевую функцию дополнительные переменные вводятся с коэффициентами, равными нулю .

Пусть далее система ограничений имеет вид

Сведём её к эквивалентной вычитанием дополнительных переменных из левых частей неравенств системы. Получим систему

Однако теперь система ограничений не имеет предпочтительного вида, так как дополнительные переменные входят в левую часть (при ) с коэффициентами, равными –1. Поэтому, вообще говоря, базисный план не является допустимым. В этом случае вводится так называемый искусственный базис. К левым частям ограниче­ний-равенств, не имеющих предпочтительного вида, добав­ляют искусственные переменные . В целевую функцию переменные , вводят с коэффициентом М в случае реше­ния задачи на минимум и с коэффициентом -М для за­дачи на максимум, где М - большое положительное число. Полученная задача называется М-задачей, соот­ветствующей исходной. Она всегда имеет предпочти­тельный вид.