Анализ экономических задач симплексным методом

Страница 4

Теорема. (малая теорема двойственности)

Для су­ществования оптимального плана любой из пары двойст­венных задач необходимо и достаточно существование допустимого плана для каждой из них.

§5. Основные теоремы двойственности

и их экономическое содержание

Теорема.

Если одна из двойственных задач имеет оптимальное решение, то и другая имеет оптимальное решение, причем экстремальные значения целевых функ­ций равны: . Если одна из двойственных задач неразрешима вследствие неограниченности целевой функции на множестве допустимых решений, то система ограничений другой задачи противоречива.

Экономическое содержание первой теоремы двойствен­ности состоит в следующем: если задача определения оптимального плана, максимизирующего выпуск продук­ции, разрешима, то разрешима и задача определения оценок ресурсов. Причем цена продукции, полученной при реализации оптимального плана, совпадает с суммар­ной оценкой ресурсов. Совпадение значений целевых функций для соответствующих планов пары двойственных задач достаточно для того, чтобы эти планы были опти­мальными. Это значит, что план производства и вектор оценок ресурсов являются оптимальными тогда и только тогда, когда цена произведенной продукции и суммарная оценка ресурсов совпадают. Оценки выступают как инструмент балансирования затрат и результатов. Двойст­венные оценки, обладают тем свойством, что они гаранти­руют рентабельность оптимального плана, т. е. равенство общей оценки продукции и ресурсов, и обусловливают убыточность всякого другого плана, отличного от опти­мального. Двойственные оценки позволяют сопоставить и сбалансировать затраты и результаты системы.

Теорема. (о дополняющей нежесткости )

Для того, чтобы планы и пары двойственных задач были оптимальны, необходимо и достаточно выполнение условий:

(1)

(2)

Условия (1), (2) называются условиями допол­няющей нежесткости. Из них следует: если какое-либо ограничение одной из задач ее оптимальным планом обра­щается в строгое неравенство, то соответствующая компо­нента оптимального плана двойственной задачи должна равняться нулю; если же какая-либо компонента опти­мального плана одной из задач положительна, то соответ­ствующее ограничение в двойственной задаче ее опти­мальным планом должно обращаться в строгое равенство.

Экономически это означает, что если по некоторому оптимальному плану производства расход i -го ресурса строго меньше его запаса , то в оптимальном плане соответствующая двойственная оценка единицы это­го ресурса равна нулю. Если же в некотором оптимальном плане оценок его i -я компонента строго больше нуля, то в оптимальном плане производства расход соответствую­щего ресурса равен его запасу. Отсюда следует вывод: двойственные оценки могут служить мерой дефицитности ресурсов. Дефицитный ресурс (полностью используемый по оптимальному плану производства) имеет положитель­ную оценку, а ресурс избыточный (используемый не полно­стью) имеет нулевую оценку.

Теорема .(об оценках). Двойственные оценки пока­зывают приращение функции цели, вызванное малым из­менением свободного члена соответствующего ограниче­ния задачи математического программирования, точнее

(3)

§6. Примеры экономических задач

5.1 Задача о наилучшем использовании ресурсов. Пусть некоторая производственная единица (цех, завод, объеди­нение и т. д.), исходя из конъюнктуры рынка, технических или технологических возможностей и имеющихся ресур­сов, может выпускать n различных видов продукции (то­варов), известных под номерами, обозначаемыми индек­сом j . Ее будем обозначать . Предприятие при производстве этих видов продукции должно ограни­чиваться имеющимися видами ресурсов, технологий, дру­гих производственных факторов (сырья, полуфабрикатов, рабочей силы, оборудования, электроэнергии и т. д.). Все эти виды ограничивающих факторов называют ингре­диентами . Пусть их число равно m; припишем им индекс i . Они ограничены, и их количества равны соответственно условных единиц. Таким обра­зом, - вектор ресурсов. Известна экономическая выгода (мера полезности) производства продукции каждого вида, исчисляемая, скажем, по отпуск­ной цене товара, его прибыльности, издержкам произ­водства, степени удовлетворения потребностей и т. д. При­мем в качестве такой меры, например, цену реализации

, т. е. —вектор цен. Известны также технологические коэффициенты , кото­рые указывают, сколько единиц i–го ресурса требуется для производства единицы продукции j-го вида. Матрицу коэффициентов называют технологической и обо­значают буквой А. Имеем . Обозначим через план производства, показывающий, какие виды товаров нужно произво­дить и в каких количествах, чтобы обеспечить предприя­тию максимум объема реализации при имеющихся ре­сурсах.

Так как - цена реализации единицы j'-й продукции, цена реализованных единиц будет равна , а общий объем реализации

Это выражение — целевая функция, которую нужно мак­симизировать.

Так как - расход i-го ресурса на производство единиц j-й продукции, то, просуммировав расход i-го ресурса на выпуск всех n видов продукции, получим общий расход этого ресурса, который не должен превосхо­дить единиц:

Чтобы искомый план был реализован, наряду с ограничениями на ресурсы нужно наложить условие неотрицательности на объёмы выпуска продукции:

.

Таким образом, модель задачи о наилучшем использовании ресурсов примет вид:

(1)

при ограничениях:

(2)

(3)