Гаметициды и их применение в селекции

Страница 6

На основании исследований конкуренции между пантоте-натом и далапоном появилась возможность предсказать но­вые аналоги пантоата в виде хлорзамещенных алифатаче-ских кислот. Были синтезированы 4 соединения, биологиче­ская активность которых (в данном случае гербицидная) варьировала в зависимости от степени хлорирования и место­

положения хлора: (далапон); при кон­

центрации 0,005 М активность далапона составляла 76%, при 0,05 М—99%.

У соединения

активность при тех же

концентрациях составляла соответственно 77 и 100%. 19

проявляли фитотоксический эффект: при концентрации 0,05 М он был равен 97 и 12%, при 0,05 М — соответственно 100 и 83%.

Таким образом, степень биологической активности препа­рата не имеет прямо пропорциональной зависимости от кон­центрации вещества, что свидетельствует о сугубо физиологи­ческой активности соединения, связанной с особенностями ме­таболизма растения.

В исследованиях по биохимизму действия ряда гербици­дов установлено существенное влияние их на трансформацию энергия в клетке, повышение интенсивности окислительных процессов и угнетение фосфорелирования в митохондриях [10, 14, 21, 23]. Нарушение сопряженности окисления и фос­форелирования — результат угнетения активности многочис­ленных ферментов цикла Кребса и дыхательной цепи мито-хондрий. Получены дополнительные сведения о гербицидах, обладающих одновременно и гаметоцидной активностью. В частности, при нанесении далапона на растения люпина .из­менялось соотношение сульфгидрильных и дисульфидных групп, входящих в состав активных центров многочисленных энзимов, участвующих в разнообразных ферментативных ком­плексах [13]. Кроме того, установлено повышенное содержа­ние изофлавоновых глюкозидов и изменение их состава при o6pai6oTKe растений 2,4Д [22].

Появление хинонов — продуктов окислительного превра­щения фенольных соединений с высокой биологической ак­тивностью и их взаимодействие с амино- и сульфгидрильны-ми группами белков, сульфгидрильными группами аскорби­новой кислоты и другими SH-содержащими компонентами клетки обусловливают блокирование целых систем энзимати-чески взаимосвязанных комплексов. От окислительно-вос­становительных условий и энергетических возможностей тка­ни, особенно спорогенной, зависят синтез и обмен важнейших органических соединений.

20

Характерными признаками ЦМС у сорго являются угне­тение окислительно-восстановительных процессов и снижение энергетического обмена [41]. Различия в активностях АТФ'азы обнаруживались у стерильных аналогов уже в фа­зе тетрад и сохранялись в дальнейшем на всех фазах разви­тия микроопор [16]. Среди соединений с гаметоцидными свой­ствами 2,4Д снижает содержание АТФ и АДФ — адениннук-леотидов, основных аккумуляторов энергии в клетке. Уста­новлено, что 2,4Д ингибирует активность аденилаткиназы — фермента, осуществляющего равновесное соотношение ком­понентов аденилатного пула: 2 АДФ ^ АМФ+ДТФ [21].

Растительные гормоны, проявившие гаметоцидные свой­ства (2,4Д, ИУК, НУК, ГКз и т. п.), могут индуцировать муж­скую стерильность на тех уровнях метаболических процес­сов, на которых они оказывают свое регуляторное действие:

на уровне генома, мембран, аллостерического эффекта. Воз­можно и одновременное влияние их на разные уровни, но во всех случаях отмечена взаимосвязь физиологически активных веществ, к которым относятся гаметоциды, с изменениями в энергетическом обмене клетки.

Существование специфических рецепторов в клеточных структурах и мембранах, способных обратимо связывать аук­сины [25], может служить молекулярно-биологической интер­претацией действия ряда соединений, проявивших гаметоцид-ную активность на различных культурах и относящихся к ауксинам (ИУК, НУК, 2,4Д, Г.Кз, кинетин и др.) [11, 12, 14, 17, 58, 135].

Отмечено, что растительные гормоны (2,4Д, ИУК, ГКз), вызывающие при определенных концентрациях различную степень индукции мужской стерильности, влияют на актив­ность энзимов, связанных с метаболизмом углеводов, опреде­ляющих структуру клеточных оболочек, с такими как р-1,4-глюканаза, р-1,3-глюканаза, (3-1,6-глюканаза я гемицеллю-лаза, а также а-1,3- и а-1,6-глюканазы [73, 99, 136]. Повы­шение активности глюканазных энзимов взаимосвязано с про­цессами деструкции их субстратов, а следовательно, и с изме-нениями в каллозной оболочке материнской клетки пыльцы и формирующихся тетрад, так как она является Р-1,3-свя-занным полимером глюкозы. Установлено, что ИУК и 2,4Д способствуют увеличению р-1,3-глюканаз'ной активности, в результате чего разрываются перекрестные связи в пределах клеточных стенок и оболочек, что обусловливает возрастание их эластичности и проницаемости [55].

Введение ИУК в растительную клетку повышает утилиза­цию глюкозы путем активации энзима УДФ-зависимой глю-кансинтетазы, локализованной в пределах аппарата Гольд-21

жи, что способствует формированию и повышенному содер­жанию глюканов, галактанов и пентозанов [42]. Подобным образом 2,4Д включается в один из уровней метаболизма клетки (через углеводы, путем активации плазменной, связан­ной с мембранами глюкансинтетазы), что способствует ути­лизации УДФ-арабинозы я увеличению количества связанных остатков арабинозы с галактаном [136]. Повышение числа сшивок в молекулах галактана изменяет пластичность кле­точных стенок. Вместе с тем аккумуляция 2,4Д в мембранах вызывает нарушение комплекса связанного с мембрана­ми белкового фактора, который обусловливает активность PHiK полимеразы, транскрибирующей определенные мРНК [66].

В опытах по конкурентному вытеснению связанных эффек-торов (производные феноксиуксусной кислоты и ИУК) на­глядно продемонстрировано, что связывание биологически ак­тивных хлорированных производных мембранами (эффектор-рецептор) носит специфический характер [14]. Изменяя фун­кциональную активность мембран и связанных с ними энзи-мов, ауксины с гаметоцидными свойствами могут вызывать индукцию синтеза определенных мРНК, ответственных за •продуцирование ряда энзимов, среди которых имеются фер­менты, преобразующие углеводные компоненты мембран и клеточных оболочек. Возрастающая при этом проницаемость может вызывать нарушение селективной изоляция формиру­ющихся тетрад с последующим их деградированием. Пред­полагают, что каллозная оболочка функционирует как «мо­лекулярный фильтр», позволяющий проникать внутрь мате­ринских клеток пыльцы основным питательным элементам, за исключением больших молекул. Последние в эту раннюю фазу могут помешать установлению автономии ядра гаплоид-ной споры в пределах собственной цитоплазмы [98].

Химическая изоляция материнских клеток пыльцы в ста­дии тетрад от окружающей диплоидной цитоплазмы является необходимой предпосылкой нормального развития пыльцы [94]. Установлено, что меченый тимидин поступает в материн­ские клетки пыльцы только до формирования каллозной обо­лочки, но не проникает, если они заключены в каллозу [72]. При изменении последней и освобождении тетрад метка сво­бодно поступала в микроспоры. Эти наблюдения позволили сделать вывод о функционировании каллозной оболочки как «молекулярного фильтра».

Каллозное покрытие материнских клеток пыльцы функцио­нировало как молекулярное сито: каллоза пропускала глю­козу и углекислый натрий, но задерживала фенилаланин, размер молекулы которого гораздо меньше глюкозы и он 22

должен был бы легко проникать в материнские клетки пыль­цы [123]. Выводы J. Heslop-iHarrison и A. Mckenzie [72] также сомнительны, так как метка могла не включаться ввиду от­сутствия синтеза ДНК. В других исследованиях показано, что роль каллозной оболочки значительно сложнее, чем «про­стого молекулярного фильтра» [4, 130].