Задача динамического программирования
Страница 3
N = 3 – число шагов.
- Технологическая линия.
= (0,0,0)
= ( )
– выбор оборудования для i-ой операции.
Ui – область допустимых УВ на i-м шаге.
т.е.
Wi – оценка минимальной себестоимости, полученная в результате реализации i-го шага.
S – функция общего выигрыша т. е. минимальная себестоимость .
- вектор – функция, описывающая переход системы из состояния в состояние
под действием УВ.
- вектор УВ на i-ом шаге, обеспечивающий переход системы из состояния xi-1 в состояние xi , т.е. оптимальный выбор оборудования за N шагов.
Si+1() – максимальный выигрыш ( в нашем случае минимальная себестоимость), получаемый при переходе из любого состояния в конечное состояние при оптимальной стратегии управления начиная с (k+1)-го шага.
S1() – максимальный выигрыш, получаемый за N шагов при переходе системы из начального состояния в конечное при реализации оптимальной стратегии управления . Очевидно, что S = S1(), если = 0.
Запишем вектора допустимых значений
Запишем вектора допустимых управляющих воздействий
Запишем вектор – функцию, описывающую переход системы из состояния в состояние
под действием УВ.
Запишем основное функциональное уравнение
1) Обратный проход
Для i=3
Учитывая то, что этот шаг у нас последний и следующей операции
уже не будет, а также то, что мы на обратном проходе, вместо функции
возьмем стоимость сырья