Дисконтирование

Дисконтирование

Содержание

Содержание. 1

Основные понятия. 2

Простая процентная ставка. 3

Виды простых ставок. 3

Формула наращения по простой процентной ставке. 4

Переменные ставки. 5

Математическое дисконтирование. 5

Сложные проценты 6

Формула наращения сложных процентов. 6

Переменные процентные ставки. 7

Математическое дисконтирование. 7

Сравнение роста по сложной и простой процентной ставке. 7

Инфляция. 8

Список литературы 10

Введение

Финансовые ресурсы, материальную основу которых составляют деньги, имеют временную ценность. Времен­ная ценность финансовых ресурсов может рассматривать­ся в двух аспектах.

Первый аспект связан с покупательной способностью денег. Денежные средства в данный момент и через опре­деленный промежуток времени при равной номинальной стоимости имеют совершенно разную покупательную спо­собность. Так. 1000 руб. через какое-то время при уровне инфляции 60% будут иметь покупательную способность всего лишь 400 руб. При современном состоянии экономи­ки и уровне инфляции денежные средства, не вложенные в инвестиционную деятельность или на хранение в банк, очень быстро обесцениваются.

Второй аспект связан с обращением денежных средств как капитала и получением доходов от этого оборота. Деньги как можно быстрее должны делать новые деньги.

В любом случае экономист должен уметь определять, сколько будет стоить нынешняя сумма через определенный период, и оценивать будущие доходы сейчас.

Основные понятия

Процентными деньгами называют абсолютную величину дохода полученную от предоставления денег в долг.

Процентной ставкой называют относительную величину дохода за оп­ределенный период времени.

Периодом наращения называют интервал времени, к которому приуро­чена процентная ставка.

Наращением называют процесс увеличения денег, предоставляемых в долг.

Наращенной суммой называют первоначальную сумму вместе с процент­ными деньгами.

Множитель наращения показывает во сколько раз наращенная сумма больше первоначальной.

Простыми процентами называют такой способ наращения, при котором проценты начисляются на первоначальную сумму.

Сложными процентами называют такой способ наращения, при котором проценты начисляют на всю накопленную сумку, а не только на первона­чальную, как при начислении простых процентов.

Декурсивными процентами называют проценты начисляемые по принципу наращения на сумму долга, процентную ставку называют при этом ставкой наращения.

Антисипативными процентами называют проценты начисляемые по принципу скидки с конечной суммы задолжности называют учетной ставкой.

Дискретными процентами называют такой способ наращения, при кото­ром время считают величиной дискретной.

Непрерывными процентами называют способ наращения, при котором время рассматривают как непрерывное.

Компаундинг - это процесс перехода от сегодняшней (т.е. текущей) стоимости капитала к его будущей стоимости.

Дисконтирование - это процесс определения сегодняшней (т.е. текущей) стоимости денег, когда известна их будущая стоимость. Применяется для оценки денежных поступлений (пибыль, проценты. Дивиденды) с позиции текущего момента.

Простая процентная ставка

Виды простых ставок

Любые проблемы, связанные с финансами, имеют множество нюансов. И это в полной мере относится к расчетам по формуле (1.1). Причем в практических проблемах, связанных с расчетом процентов, эти нюансы в основном касаются определения длительности займа t. Отметим неко­торые из них. Для этого еще раз напомним, что мы договорились считать единицей времени год.

В краткосрочном контракте по предоставлению кредита срок его дей­ствия естественно измерять днями. Поэтому при выбранной единице вре­мени длительность займа удобно записывать в виде

t=n/N (1)

где n - длительность контракта в днях, а N - число дней в году. При этом оказывается, что в разных странах мира сложилась своя практика, банковская и коммерческая, в отношении базы времени N . Возможны следующие четыре варианта:

N=360, N=3б5, N=365,25, N = 366.

из которых первый во многих странах называется коммерческим годом.

Но выбор одного из этих вариантов еще не вносит полную ясность в расчет t поскольку не меньше подходов к определению числа n.Так, оно может быть точнымчислом дней от одной даты до другой, включаю­щим или не включающим в себя границы. Хотя наиболее распространен­ная практика определения числа дней ссуды по календарю такая: первый день не учитывается, а последний – учитывается[1]. Но это же число мо­жет получаться совсем по-другому. Например, когда рассматриваемый период (ссуды) разбивается на три части, две из которых - первая и тре­тья - выражаются в днях, а средняя - точным числом месяцев, которые берутся равными 30 дням, или семестров, равных 90 дням.

Кстати, в Германии, Дании, Швеции год условно считается коммер­ческим, а месяц - имеющим 30 дней. Также коммерческий год использу­ется во Франции, Бельгии, Испании, Швейцарии, Югославии. Но здесь предпочитают рассчитывать точное число дней контракта по календа­рю. Наконец, обычный год в 365 дней (или 366) и календарный расчет срока распространен в таких странах, как Португалия, США и Велико­британия. При этом,скажем, в Англии, при банковских ссудах полгода приравниваются к 182 дням.

В банковской системе используют три способа расчета процентов:

Точеные проценты с точным числом дней ссуды или 365/365.

Обыкновенные проценты с точным числом дней ссуды или 365/360.

Обыкновенные проценты с приближенным числом дней ссуды или 360/360.

Вариант 360/365 на практике не применяется.

Формула наращения по простой процентной ставке

Пусть:

I - проценты за весь срок ссуды;

Р - первоначальная сумма долга;

S - наращенная сумма, или сумма в конце срока;

i - ставка наращения (десятичная дробь);

n - срок ссуды.

Каждый год процента составляют Рi.

Начисленные за весь срок про­центы:

I=Pni (2)

Наращенная сумма:

S = Р + I = Р (1+ni) (3)

Это - формула простых процентов. Множитель - множитель наращения проема процентов.

Переменные ставки

Если предусмотрены изменяющиеся во времени процентные ставки, то наращенная сумма будет определяться следующим образом:

S = Р ( 1 +n1i2+ n2i2 + . +nmim ) (4)

Где ik – процентная ставка в период k,

nk – продолжительность периода к.

В ряде практических приложений финансового анализа встает вопрос об определении первоначальной суммы долга по накопленной сунне, в зависимости от используемой ставки он решается путей использования мате­матического дисконтирования или банковского учета.

Математическое дисконтирование

Математическое дисконтирование является точным формальным решени­ем обратной задачи.

Р = S/(1+ni) (5)

Множитель:

1

1 + ni

называют дисконтным множителем.

Задача 1

Определить сумму, вложенную в коротко-срочные облигации доходностью 5% годовых на 7 месяцев, которые принесли дивиденды на 19000 рублей.

Решение

i = 0,05/12 = 0,0041 или 0,42 %

по формуле (5):

P= 19000/(1+7*0,0041) = 18464,5 рубля

Сложные проценты

Идея сложных процентов очень проста. В них, в отличие от простых про­центов, существует период времени, по истечении которого проценты начисляются не только на имеющуюся в начале этого периода сумму, но и на накопившиеся к его концу проценты. Конечно, интервал этот может быть разным по длине, например, месяц или год. Но если уж он выбран, то является циклическим, т.е. на некотором промежутке ось времени раз­бивается этими периодами, а равные части, как линейка на сантиметры. В то же время так же, как и простые проценты, сложные не могут не существовать!