Количественные методы в управлении

Страница 5

матрица рисков

 

Варианты (ситуации)

max

Сэвидж

Решения

2

5

6

4

6

 

0

3

4

2

4

 

2

2

2

2

2

 

0

0

0

0

0

0

Правило Вальда называют правилом крайнего пессимизма: ЛПР уверен, что какое-бы решение он ни принял, ситуация сложится для него самая плохая, так что, принимая i-е решение, он получит минимальный доход q[i]=min{q[i,j]:j=1 4}. Но теперь уже из чисел q[i] ЛПР выбирает максимальное и принимает соответствующее решение.

По правилу Сэвиджа находят в каждой строке матрицы рисков максимальный элемент r[i] и затем из чисел r[i] находят минимальное и принимают соответствующее решение.

По правилу Гурвица для каждой строки матрицы доходов находят величину z[i]=l*max{q[i,j]:j=1 4}+(1-l)*min{q[i,j]:j=1 4}, потом находят из чисел z[i] наибольшее и принимают соответствующее решение. Число l каждый ЛПР выбирает индивидуально - оно отражает его отношение к доходу и риску, при приближении l к 0 правило Гурвица приближается к правилу Вальда, при приближении l к 1 - к правилу розового оптимизма, в нашем случае l равно 1/3.

Итак, по правилу Вальда нам следует принять либо 2-ое, либо 4-ое решение. Сэвидж и Гурвиц нам советуют принять 4-ое решение.

Пусть теперь нам известны вероятности ситуаций - p[j]. Имея матрицу доходов Q теперь можно сказать, что доход от i-го решения есть с.в. Q[i] с доходами q[i,j] и вероятностями этих доходов p[j]. Кроме того, риск i-го решения также есть с.в. R[i] с рисками r[i,j] и вероятностями этих рисков p[j].

Тогда М(Q[i]), М(R[i]) - средний ожидаемый доход и средний ожидаемый риск i-го решения. Принимать решение (проводить операцию) нужно такое, у которого наибольший средний ожидаемый доход, или наименьший средний ожидаемый риск.

 

Варианты (ситуации)

М(Q[i]), М(R[i])

Доходы

0

1

2

8

2

2

3

4

10

4

0

4

6

10

4

2

6

8

12

6

Риски

2

5

6

4

4

0

3

4

2

2

2

2

2

2

2

0

0

0

0

0

p[j]

1/3

1/3

1/6

1/6

 

М(Q[i])= S (q[i,j]* p[j]) М(R[i])= S (r[i,j]* p[j])

Голубым цветом выделен наибольший средний ожидаемый доход (4-ое решение), а красным цветом – наибольший средний ожидаемый риск (4-ое решение). Как видим, они соответствуют одному и тому же решения. Его и следует принять.

Операции: 1-я – (4;2), 2-я – (2;4), 3-я – (2;4), 4-я – (0;6).

Красным цветом высвечены доминируемые точки (операции), а зеленым – недоминируемые, т.е. оптимальные по Парето. Оптимальной по Парето является 4-я операция.

Была проведена пробная операция, которая значительно сместила распределение вероятностей.

 

Варианты (ситуации)

М(Q[i]), М(R[i])

М*(Q[i]), М*(R[i])

Доходы

0

1

2

8

2

7,2

2

3

4

10

4

9,2

0

4

6

10

4

9

2

6

8

12

6

11

Риски

2

5

6

4

4

3,8

0

3

4

2

2

1,8

2

2

2

2

2

2

0

0

0

0

0

0

p[j]

1/3

1/3

1/6

1/6

 

p*[j]

0,1

0

0

0,9