Математическое моделирование в сейсморазведке
Страница 10
4) рассогласование в положении сопоставленных экстремумов на оси времени: , здесь Dmax – заданное максимально допустимое отклонение.
Лекция 8 |
Решение этой задачи изучим на примере интерпретации временного разреза по профилю 017801 в Самарской области, проходящему вкрест северо-восточного борта Муханово-Ероховского прогиба от скв. 19 Капитоновская через скв. 28 Винно-Банновская и 11 Мочалеевская. Рассмотрим результаты интерпретации только по участку профиля в пределах Винно-Банновского поднятия (протяженность участка 2,5 км). По глубине был выбран интервал терригенных отложений нижнего карбона, который на сейсмическом временном разрезе заключен между опорными отражающими горизонтами У и Т стратиграфически сопоставляемыми с пластом глин тульского горизонта и кровлей карбонатных отложений турне соответственно.
Двумерная модель нулевого приближения строилась только по данным сейсморазведки, для чего использовались временной разрез, глубинный сейсмический разрез и разрез ПАК. Выбор такого варианта построения был обусловлен тем, что в имеющихся на профиле скважинах не проводился АК и, кроме того, преследовалась цель сопоставить окончательный результат интерпретации с данными бурения. По этой причине модель нулевого приближения, все промежуточные модели и окончательную модель следует рассматривать как эффективные сейсмические модели.
Полученная в результате коррекции параметров окончательная сейсмологическая модель показана на рис. 12, а, сопоставление фрагментов реального и синтетического временных разрезов проведено на рис. 12, б, в соответственно. Количественная оценка сходства этих разрезов с помощью нормированной функции взаимной корреляции дала такие результаты: максимальные значения, например, по трассам 88, 120 и др. достигают 0,97, минимальные значения – не ниже 0,85, в среднем же эта оценка равна 0,921. Такое сходство, несомненно, можно признать достаточно высоким.
В процессе итеративного моделирования корректировались не только параметры тонких слоев модели, но и параметры импульса, моделирующего сейсмический сигнал. В итоге было установлено, что параметры оптимального импульса изменяются по профилю следующим образом: преобладающая частота – от 41 до 49 Гц, затухание – от 9000 до 10300, фаза – от 1,43 до 1,95. С учетом такого изменения параметров исходного импульса рассчитывался окончательный СВР на рис. 12, в.
О точности модели после коррекции можно судить по сопоставлению с данными бурения по скв. 28 Винно-Банновская (рис. 8, д). Детальный скоростной разрез по ней получен путем прогнозирования по данным промысловой геофизики и затем профильтрован нуль-фазовым фильтром 20-100 Гц. Такое сопоставление показывает, что подбор и оптимизация модели выполнены достаточно точно.
При анализе окончательной сейсмогеологической модели на рис. 12, а были получены важные геологические результаты.
Во-первых, во всех пластах моделируемого интервала наблюдается изменение упругих параметров (скорости и плотности) по латерали. Наибольшие изменения отмечаются в нижней части интервала, т.е. в пластах песчаника и глин радаевского и елховского горизонтов. Менее изменчивы параметры пластов тульского горизонта, например скорость в тульской плите изменяется сравнительно плавно и в пределах не более 4%. Существенно большую изменчивость скорости в пластах песчаника и глин нижезалегающих отложений бобриковского, радаевского и елховского горизонтов можно объяснить значительной их неоднородностью, т.е. в пластах песчаника встречаются сильно заглинизированные участки и, наоборот, глины содержат неравномерно распределенный песчаный материал.
Во-вторых, локализация зоны выклинивания пласта С-Ш на северо-восточном крыле Винно-Банновской структуры в значительной мере меняет перспективы выявления здесь структурно-литологической ловушки, связанной с этим пластом. Ранее по результатам исследований, в которых использовались только динамические характеристики записи, линия выклинивания этого пласта намечалась на юго-западном крыле структуры (на 1 км "левее" на рис. 12, а), и было высказано предположение о существовании здесь ловушки структурно-литологического типа. Теперь на основе новых данных, полученных с помощью моделирования, становится очевидным, что выклинивание пласта С-Ш происходит северо-восточнее, т.е. за пределами структуры, и существование ловушки данного типа является маловероятным. Заметим также, что при интерпретации данные ГИС скв. 28 Винно-Банновская не использовались, поскольку по этим данным пласт С-Ш идентифицируется неоднозначно.
В-третьих, к юго-западу от скв, 28 Винно-Банновская, на расстоянии примерно 400–500 м, в пределах почти всей песчано-глинистой толщи нижнего карбона (бобриковский, радаевский и елховский горизонты) отчетливо выделяется зона разуплотнения, отображающаяся на модели понижением скоростей и плотностей, а на трассах временных разрезов в виде локального изменения формы записи (например, появления глубокого минимума перед отражением от кровли турне). В этой зоне разуплотнения можно ожидать улучшенные коллекторские свойства пластов песчаника радаевского и бобриковского горизонтов по сравнению с коллекторскими свойствами в скв. 28 Винно-Банновской.
В-четвертых, обращаясь к распределению скоростей и плотностей в карбонатных отложениях турнея, можно видеть, что имеются участки с заметно пониженным значением этих параметров. Наиболее контрастный из них расположен на пикетах 33,0-39,0 (трассы 89-103), т.е. на юго-западном склоне Винно-Банновского поднятия. На временных разрезах данная аномалия упругих параметров отображается в виде значительного, почти в 2 раза, ослабления амплитуд отражения Т. Понижение скоростей в пределах аномалии составляет не менее 1300 м/с, т.е. скорости уменьшаются от 6300–6500 м/с за пределами аномалии до 5050 м/с в ее центральной части. Наиболее вероятным объяснением природы этой аномалии является увеличение пористости пород турне. Расчеты показывают, что в центральной части аномалии пористость выше на 10–13% по сравнению с пористостью за ее пределами, где она была принята равной 3%. При такой пористости породы турне могут являться хорошим коллектором, и, следовательно, можно предположить существование здесь литологически ограниченной ловушки углеводородов. Размеры этой ловушки по рассматриваемому профилю невелики – не более 0,5–0,6 км, но не исключено, что такая высокопористая зона протягивается по простиранию северо-восточного борта Муханово-Ероховского прогиба на значительное расстояние.
Важным резервом прироста запасов нефти и газа на территории Волго-Уральской нефтегазоносной провинции являются структуры, контролируемые зонами погребенных девонских грабенообразных прогибов. Поэтому в настоящее время общей задачей исследований в этом направлении является оценка возможности выявления масштабов распространения грабенообразных прогибов и связанных с ними месторождений нефти в тех районах Волго-Уральской провинции, где они пока не получили должного практического использования.
Полученные в результате качественной интерпретации временных разрезов модели грабенообразных прогибов являются весьма приближенными, и такие параметры прогибов, как ширина, амплитуда сброса и др. могут иметь существенные отклонения от истинных. Более точные значения этих параметров можно определить путем применения методики интерпретации, основанной на итеративном математическом моделировании. Рассмотрим результаты такой интерпретации на примере временного разреза по профилю 24, пересекающему Санчелеевский грабенообразный прогиб в северной его части. Несмотря на то, что на временном разрезе (рис. 13, в) признаки прогиба в записи отражающего горизонта Д выражены отчетливо, построить достаточно корректную модель, применяя стандартные приемы интерпретации, оказалось невозможным. Поэтому в качестве априорной модели (модели нулевого приближения) были поочередно рассмотрены пять вариантов, различающихся тем, что строение девонских отложений и фундамента видоизменялось от неглубокого синклинального прогиба с амплитудой 50 м и шириной 1,5 км до узкого грабена с амплитудой 200 м и шириной 0,5 км. При моделировании грабена изменялись не только амплитуда и ширина, но и форма краевых частей пластов, примыкающих к линии сброса, и строение опущенного блока. Детальная скоростная характеристика девонских отложений была спрогнозирована на основе данных промысловой геофизики по скважине, расположенной в 3,0 км от профиля. Расчет волнового поля производился по программе 57511 из пакета "Вестерн Джеофизикал Компани", алгоритм которой основан на численном решении дифракционного интеграла Кирхгофа для многослойной среды. Выбор такого способа расчета обусловлен тем, что интерпретируемый временной разрез на рис. 13, в не подвергался миграции.