Моделирование работы банка

Страница 2

Большое число задач планирования, управления и проекти­рования укладывается в схему линейного программирования:

C x ® min, (1.1)

Ax £ b, (1.2)

X ³ 0. (1.3)

Еще более широкий класс задач выбора эффективного ре­шения укладывается в рамки общей схемы математического программирования.

План, набор команд управления или проект часто могут быть формально представлены в виде системы чисел или функ­ций, удовлетворяющих определенным ограничениям — равен­ствам, неравенствам или логическим соотношениям. План, си­стема команд управления или проект оптимальны, если они, кроме того, обращают в минимум или в максимум (в зависи­мости от постановки задачи) некоторую функцию от искомых параметров — показатель качества решения.

Запись (1.1)—(1.3), вполне осмысленная при детерминиро­ванных значениях параметров условий задачи, теряет опреде­ленность и требует дополнительных разъяснений при случайных значениях исходных данных. Между тем во многих прикладных задачах коэффициенты cj целевой функции, элементы матрицы условий А или составляющие вектора ограничений b — случай­ные величины.

Исходная информация для планирования, проектирования и управления в экономике, как пра­вило, недостаточно достоверна. Планирование производства обычно ведется в условиях неполной информации об обстановке, в которой будет выполняться план и реализовываться произ­веденная продукция. Во всех случаях в моделях математического программирования, к исследованию которых сводятся задачи планирования, проектирования и уп­равления, отдельные или все параметры целевой функции и ограничений могут оказаться неопределенными или случай­ными, Естественный на первый взгляд путь анализа подобных задач—замена случайных параметров их средними значениями и вычисление оптимальных планов полученных таким образом детерминированных моделей—не всегда оправдан. При сгла­живании параметров условий задачи может быть нарушена адекватность модели изучаемому явлению. Усреднение исходных данных может привести к потере полезной информации и привнести в модель ложную информацию. Решение детерми­нированной задачи с усредненными параметрами может не удовлетворять ограничениям исходной модели при допустимых реализациях параметров условий.

2.2.Стохастическое программирование.

В одних случаях опыт, статистика и изучение процессов, определяющих изменение исходных данных и формирующих условия, в которых реализуется план, проект или система управ­ления, позволяют устанавливать те или иные вероятностные характеристики параметров целевой функции и ограничений задачи. В других случаях нет оснований, для каких бы то ни было суждений о статистических особенностях явлений, способ­ных изменить предполагаемые значения параметров условий задачи. Ситуации первого типа называются ситуациями, связан­ными с риском, а ситуации второго типа - неопределенными. И те, и другие являются предметом исследования стохастического программирования—раздела математического програм­мирования, изучающего теорию и методы решения условных экстремальных задач при неполной информации о параметрах условий задачи.

Постановки задач стохастического программирования суще­ственным образом зависят от целевых установок и информаци­онной структуры задачи.

В приложениях стохастическое программирование исполь­зуется для решения задач двух типов. В задачах первого типа прогнозируются статистические характеристики поведения мно­жества идентичных экстремальных си­стем. Соответствующий раздел стохастического программирова­ния будем называть пассивным стохастическим программиро­ванием. Модели второго типа предназначены для построения методов и алгоритмов планирования и управления в условиях неполной информации. Соответствующий раздел стохастического программирования будем называть активным стохастическим программированием, подчеркивая этим действенную целевую на­правленность моделей.

Подходы к постановке и анализу стохастических экстре­мальных задач существенно различаются в зависимости от того, получена ли информация о параметрах условий задачи (пли об их статистических характеристиках) в один прием или по частям (в два или более этапов). При построении стохастиче­ской модели важно также знать, необходимо ли единственное решение, не подлежащее корректировке, или можно по мере накопления информации один или несколько раз подправлять решение. Другими словами, речь идет о том, какая задача рас­сматривается: статическая или динамическая. В соответствии с этим в стохастическом программировании исследуются одно­этапные, двухэтапные и многоэтапные задачи.

Статические, или одноэтапные, задачи стохастического про­граммирования представляют собой естественные стохастиче­ские аналоги детерминированных экстремальных задач, в кото­рых динамика поступления исходной информации не играет роли, а решение принимается один раз и не корректируется. Одноэтапные стохастические задачи, как те, что порождены де­терминированными моделями стохастического программирова­ния, так и те, что имеют смысл только при случайных парамет­рах условий, различаются характером ограничений и выбором целевой функции.

Разработка предварительного плана и компенсация невя­зок - два этапа решения одной задачи. В соответствии с этим задачи рассматриваемого типа называют двухэтапными за­дачами стохастического программирования.

Естественным обобщением двухэтапных задач являются многоэтапные (динамические) задачи стохастического програм­мирования. Часто в процессе управления представляется воз­можность последовательно наблюдать ряд реализаций парамет­ров условий и соответствующим образом корректировать план. Естественно, что как предварительный план, так и последова­тельные корректировки должны, помимо содержательных огра­ничений, учитывать априорные статистические характеристики случайных параметров условий на каждом этапе.

К анализу многоэтапных задач стохастического программи­рования сводятся формальные исследования численных методов планирования производства и развития экономической системы.

Роль стохастических моделей и методов в исследо­вании закономерностей поведения экономических систем и в разработке количественных методов планирования экономики и управления производством имеет два аспекта — методологический и вычислительный. И тот и другой связаны с одной из важнейших категорий современной матема­тической логики — с понятием сложности, точнее, с понятиями «сложность алгоритма», «сложность вычислений» и «сложность развития».

Роль вычислительного аспекта проблемы определяется тем, что планирование, управление и проектирование происходят, как правило, в условиях неполной информации. Рыночная конъюнктура, спрос на продукцию, изменения в состоянии обо­рудования не могут быть точно предсказаны. В условиях кон­курентной экономики дополнительно возникает направленная дезинформация.

Учет случайных факторов и неопределенности в планировании и управлении — важная задача стохастического программирования.

Однако этим не исчерпывается роль стохастических методов в экономическом анализе. Принципы стохастического програм­мирования дают основание для сопоставления затрат на накоп­ление и хранение информации с достигаемым экономическим эффектом, позволяют аргументировать рациональное разделе­ние задач между человеком и вычислительной машиной и слу­жат теоретическим фундаментом для алгоритмизации управле­ния сложными системами. Принципы стохастического програм­мирования позволяют сблизить точные, но узко направленные формальные математические методы с широкими, но нечеткими содержательными эвристическими методами анализа. И здесь, таким образом, мы переходим к методологической роли стоха­стического программирования в исследовании сложных систем.

В связи с оценками сложности алгоритмов и вычислений представляет смысл условно разделить задачи планирования, управления и проектирования на задачи вычислительного и не вычислительного характера.

Многие задачи управления, должны быть отнесены к классу задач не вычислительного характера. Т.о. необходимо согласование сложности управляемого объекта и управляющего устройства за счет ра­ционального упрощения объекта (разумной переформулировки задачи).