Значение и роль фотосинтеза
Страница 2
СО2 + Н2О + Свет –О2 + Крахмал + Химическая энергия
Итак, к началу нашего века суммарная реакция фотосинтеза была уже известна. Однако биохимия находилась не на таком высоком уровне, чтобы полно раскрыть механизмы восстановления двуокиси углерода до углеводов. К сожалению, следует признать, что и теперь еще некоторые аспекты фотосинтеза изучены довольно плохо. Издавна делались попытки исследовать влияние интенсивности света, температуры, концентрации углекислоты и т п. на общий выход фотосинтеза. И хотя в этих работах исследовались растения самых разных видов, большинство измерений было выполнено на одноклеточных зеленых водорослях и на одноклеточной жгутиковой водоросли Эвглена. Одноклеточные организмы удобнее для качественного исследования, поскольку их можно выращивать во всех лабораториях при вполне стандартных условиях. Они могут быть равномерно суспензированы, т. е. взвешены в водных буферных растворах, и нужный объем такой суспензии, или взвеси, можно брать такой дозировки, точно так же, как при работе с обычными растениями. Хлоропласты для опытов лучше всего выделять из листьев высших растений. Чаще всего используют шпинат, потому что его легко выращивать и свежие листья удобны для проведения исследований; иногда используются листья гороха и салата-латука.
Поскольку СО2 хорошо растворяется в воде, а О2 относительно нерастворим в воде, то при фотосинтезе в замкнутой системе давление газа в этой системе может изменяться. Поэтому влияние света на фотосинтетические системы часто исследуют с помощью респиратора Варбурга, позволяющего регистрировать пороговые изменения объема 02 в системе. Впервые респиратор Варбурга был использован применительно к фотосинтезу в 1920г. Для измерения потребления или выделения кислорода в ходе реакции удобнее пользоваться другим прибором - кислородным электродом. В основе этого устройства лежит использование полярографического метода. Кислородный электрод обладает достаточной чувствительностью для того, чтобы обнаружить в таких низких концентрациях как 0,01 ммоль в 1 л. Прибор состоит из катода достаточно тонкой платиновой проволоки, герметично впрессованной в пластину анода, представляющего собой кольцо из серебряной проволоки, погруженной в насыщенный раствор. Электроды отделены от смеси, в которой протекает реакция, мембраной, проницаемой для 02. Реакционная система находится в пластмассовом или стеклянном сосуде и постоянно перемешивается вращающимся стержневым магнитом. Когда к электродам приложено напряжение, платиновый электрод становится отрицательным по отношению к стандартному электроду, кислород в растворе электролитически восстанавливается. При напряжении от 0,5 до 0,8 В величина электрического тока линейно зависит от парциального давления кислорода в растворе. Обычно с кислородным электродом работают при напряжении около 0,6 В. Электрический ток измеряют, присоединив электрод к подходящей регистрирующей системе. Электрод вместе с реакционной смесью орошают потоком воды от термостата. С помощью кислородного электрода измеряют действие света и различных химических веществ на фотосинтез. Преимущество кислородного электрода перед аппаратом Варбурга состоит в том, что кислородный электрод позволяет быстро и непрерывно регистрировать изменения содержания О2 в системе. С другой стороны, в приборе Варбурга можно одновременно исследовать до 20 образцов с различными реакционными смесями, тогда как при работе с кислородным электродом образцы приходится анализировать поочередно.
Примерно до начала 1930-х годов многие исследователи в этой области полагали, что первичная реакция фотосинтеза заключается в расщеплении двуокиси углерода под действием света на углерод и кислород с последующим восстановлением углерода до углеводов с участием воды в ходе нескольких последовательных реакций. Точка зрения изменилась в 1930-х годах в результате двух важных открытий. Во-первых, были описаны разновидности бактерий, способных ассимилировать и синтезировать углеводы, не используя для этого энергию света. Затем, голландский микробиолог Ван Нил сравнил процессы фотосинтеза у бактерий и показал, что некоторые бактерии могут ассимилировать С02 на свету, не выделяя при этом кислорода. Такие бактерии способны к фотосинтезу лишь при наличии подходящего субстрата-донора водорода. Ван Нил предполагал, что фотосинтез зеленых растений и водорослей является частным случаем, когда кислород в фотосинтезе происходит из воды, а не из углекислоты.
Второе важное открытие сделал в 1937 г. Р. Хил в Кембриджском университете. С помощью дифференциального центрифугирования гомогената тканей листа он отделил фотосинтезирующие частицы (хлоропласты) от дыхательных частиц. Полученные Xиллом хлоропласты при освещении сами по себе не выделяли кислорода (возможно, из-за того, что они были повреждены при разделении). Однако они начинали выделять кислород на свету, если в суспензию вносили подходящие акцепторы электрона (окислители), например ферриоксалат калия или феррицианид калия. При выделении одной молекулы 02 фотохимически восстанавливались четыре эквивалента окислителя. Позднее было обнаружено, что многие хиноны и красители восстанавливаются хлоропластами на свету. Однако хлоропласты не могли восстановить СО2, природный акцептор электронов при фотосинтезе. Это явление, известное теперь как реакция Хилла, представляет собой индуцируемый светом перенос электронов от воды к нефизиологическим окислителям (реагентам Хилла) против градиента химического потенциала. Значение реакции Хилла состоит в том, что она продемонстрировала возможность разделения двух процессов - фотохимического выделения кислорода и восстановления углекислоты при фотосинтезе.
Разложение воды, приводящее к выделению свободного кислорода при фотосинтезе, было установлено Рубеном и Каменом, в Калифорнии в 1941 г. Они поместили фотосинтезирующие клетки в воду, обогащенную изотопом кислорода, имеющим массу 18 атомных единиц 180. Изотопный состав кислорода, выделенного клетками, соответствовал составу воды, но не С02. Кроме того, Камен и Рубен открыли радиоактивный изотоп 18О, который впоследствии успешно использовали Бассэт, Бенсон Вин, изучавшие путь превращения углекислоты при фотосинтезе. Кальвин и его сотрудник установили, что восстановление углекислоты до сахаров происходит в результате темновых ферментативных процессов, причем для восстановления одной молекулы углекислоты требуются две молекулы восстановленного АДФ и три молекулы АТФ. К тому времени роль АТФ и пиридиннуклеотидов в дыхании тканей была установлена. Возможность фотосинтетического восстановления АДФ до АТФ выделенными хлорофиллами была доказана в 1951 г. в трех разных лабораториях. В 1954 г. Арнон, Аллен продемонстрировали фотосинтез - они наблюдали ассимиляцию С02 и 02 выделенными хлоропластами шпината. В течение следующего десятилетия из хлоропластов удалось выделить белки, участвующие в переносе электронов в синтезе -ферредоксин, пластоцианин, ферроАТФ-редуктазу, цитохромы и т. д.
Таким образом, в здоровых зеленых листьях, под действием света образуются АДФ и АТФ и энергия гидросвязей используются для восстановления С02 до углеводов в присутствии ферментов, причем активность ферментов регулируется светом.
Интенсивность, или скорость процесса фотосинтеза в растении зависит от ряда внутренних и внешних факторов. Из внутренних факторов наиболее важное значение имеют структура листа и содержание в нем хлорофилла, скорость накопления продуктов фотосинтеза в хлоропластах, влияние ферментов, а также наличие малых концентраций необходимых неорганических веществ. Внешние параметры - это количество и качество света, попадающего на листья, температура окружающей среды, концентрация углекислоты и кислорода в атмосфере вблизи растения.
Скорость фотосинтеза возрастает линейно, или прямо пропорционально увеличению интенсивности света. По мере дальнейшего увеличения интенсивности света нарастание фотосинтеза становится все менее и менее выраженным, и, наконец, прекращается, когда освещенность достигает определенного уровня 10000 люкс. Дальнейшее увеличение интенсивности света уже не влияет на скорость фотосинтеза. Область стабильной скорости фотосинтеза называется областью светонасыщения. Если нужно увеличить скорость фотосинтеза в этой области, следует изменять не интенсивность света, а какие-либо другие факторы. Интенсивность солнечного света, попадающего в ясный летний день на поверхность земли, во многих местах нашей планеты составляет примерно 100000 люкс. Следовательно, растениям, за исключением тех, которые растут в густых лесах и в тени, падающего солнечного света бывает достаточно для насыщения их фотосинтетической активности (энергия квантов, соответствующих крайним участкам видимого диапазона – фиолетового и красного, различается всего лишь в два раза, и все фотоны этого диапазона в принципе способны осуществить запуск фотосинтеза).