Значение и роль фотосинтеза

Страница 3

В случае низких интенсивностей света скорость фотосинтеза при 15 и 25°С одинакова. Реакции, протекающие при таких интенсивностях света, которые соответствуют области лимитирования света, подобно истинным фотохимическим реакциям, не чувствительны к температурам. Однако при более высоких интенсивностях скорость фотосинтеза при 25°С гораздо выше, чем при 15°С. Следовательно, в области светового насыщения уровень фотосинтеза зависит не только от поглощения фотонов, но и от других факторов. Большинство растений в умеренном климате хорошо функционируют в интервале температур от 10 до 35°С, наиболее благоприятные условия - это температура около 25°С.

В области лимитирования светом скорость фотосинтеза не изменяется при уменьшении концентрации СО2 . Отсюда можно сделать вывод, что С02 участвует непосредственно в фотохимической реакции. В то же время при более высоких интенсивностях освещения, лежащих за пределами области лимитирования, фотосинтез существенно возрастает при увеличении концентрации СО2. У некоторых зерновых культур фотосинтез линейно возрастал при увеличении концентрации СО2 до 0,5%. (эти измерения проводили в кратковременных опытах, поскольку длительное воздействие высоких концентраций СО2 повреждает листы). Высоких значений скорость фотосинтеза достигает при содержании С02 около 0,1%. Средняя концентрация углекислоты в атмосфере составляет от 0,03%. Поэтому в обычных условиях растениям не хватает СО2 для того, чтобы с максимальной эффективностью использовать попадающий на них солнечный свет. Если помещенное в замкнутый объем растение освещать светом насыщающей интенсивности, то концентрация СО2 в объеме воздуха будет постепенно уменьшаться и достигнет постоянного уровня, известного под названием «С02 компенсационного пункта». В этой точке появление СО2 при фотосинтезе уравновешивается выделением О2 в результате дыхания (темнового и светового). У растений разных видов положения компенсационных пунктов различны.

Световые и темновые реакции.

Еще в 1905 г. английский физиолог растений Ф. Ф. Блекмэн, интерпретируя форму кривой светового насыщения фотосинтеза, высказал предположение, что фотосинтез представляет собой двухстадийный процесс, включающий фотохимическую, т.е. светочувствительную реакцию и нефотохимическую, т. е. темновую, реакцию. Темновая реакция, будучи ферментативной, протекает медленнее, чем световая реакция, и поэтому при высоких интенсивностях света скорость фотосинтеза полностью определяется скоростью темновой реакции. Световая реакция либо вообще не зависит от температуры, либо зависимость эта выражена очень слабо, тогда темновая реакция, как и все ферментативные процессы, зависит от температуры в довольно значительно и степени. Следует ясно представлять себе, что реакция, называемая темновой, может протекать как в темноте, так и на свету. Световую и темновую реакции можно разделить, используя вспышки света, длящиеся краткие доли секунды. Вспышки света длительностью меньше одной миллисекунды (10-3 с) можно получить либо с помощью механического приспособления, поставив на пути пучка постоянного света вращающийся диск со щелью, либо электрически, заряжая конденсатор и разряжая его через вакуумную или газоразрядную лампу. В качестве источников света пользуются также рубиновыми лазерами с длиной волны излучения 694 нм. В 1932 г. Эмерсон и Арнольд освещали суспензию клеток вспышками света от газоразрядной лампы с длительностью около 10-3с. Они измеряли скорость выделения кислорода в зависимости от энергии вспышек, длительности темнового промежутка между вспышками и температуры суспензии клеток. При увеличении интенсивности вспышек насыщение фотосинтеза в нормальных клетках наступало, когда выделялась одна молекула 02 на 2500 молекул хлорофилла. Эмерсон и Арнольд сделали вывод, что максимальный выход фотосинтеза определяется не числом молекул хлорофилла, поглощающих свет, а числом молекул фермента, катализирующего темновую реакцию. Они также обнаружили, что при увеличении темновых интервалов между последовательными вспышками за пределы 0,06 с выход кислорода в расчете на одну вспышку уже не зависел от длительности темнового интервала, тогда как при более коротких промежутках он возрастал с увеличением длительности темнового интервала (от 0 до 0,06 с). Таким образом, темновая реакция, которая определяет уровень насыщения фотосинтеза, завершается примерно за 0,06 с. На основе этих данных было рассчитано, что среднее время, характеризующее скорость реакции, составило около 0,02 с при 25°С.

СТРУКТУРНАЯ И БИОХИМИЧЕСКАЯ ОРГАНИЗАЦИЯ

АППАРАТА ФОТОСИНТЕЗА

Современные представления о структурной и функциональной организации фотосинтетического аппарата включают широкий круг вопросов, связанных с характеристикой химического состава пластид, спецификой их структурной организации, физиолого-генетическими закономерностями биогенеза этих органоидов и их взаимоотношениями с другими функциональными структурами клетки. У наземных растений специальным органом фотосинтетической деятельности служит лист, где локализованы специализированные структуры клетки - хлоропласты, содержащие пигменты и другие компоненты, необходимые для процессов поглощения и преобразования энергии света в химический потенциал. Кроме листа функционально активные хлоропласты присутствуют в стеблях растений, черешках, остях и чешуях колоса и даже в освещаемых корнях ряда растений. Однако именно лист был сформирован в ходе длительной эволюции как специальный орган для выполнения основной функции зеленого растения – фотосинтеза, поэтому анатомия листа, расположение хлорофиллсодержащих клеток и тканей, их соотношение с другими элементами морфемной структуры листа подчинены наиболее эффективному течению процесса фотосинтеза, и они в наибольшей степени подвергаются интенсивным изменениям в условиях экологического стресса.

В связи с этим проблему структурно - функциональной организации фотосинтетического аппарата целесообразно рассмотреть в двух основных уровнях - на уровне листа как органа фотосинтеза и хлоропластов, где целиком сосредоточен весь механизм фотосинтеза.

Организация фотосинтетического аппарата на уровне листа может быть рассмотрена на основе анализа его мезострктуры. Понятие «мезоструктура» было предложено в 1975 году. По представлениям о структурной и функциональной особенностях фотоситнетического аппарата с характеристикой химического состава, структурной организации, физиолого-генетическими особенностями биогенеза этих органоидов и их взаимоотношениями с другими функциональными структурами специальным органом фотосинтетического процесса является лист, где локализованы специализированные образования - хлоропласты, содержащие пигменты, необходимые для процессов поглощения и преобразования света в химический потенциал. Кроме того, активные хлоропласты присутствуют в стеблях, остях и чешуях колоса и даже в освещенных частях корней некоторых растений. Однако именно лист был сформирован всем ходом эволюции как специальный орган для

выполнения основной функции зеленого растения - фотосинтеза.

Мезоструктура включает систему морфофизиологических характеристик фотосинтетического аппарата листа, хлоренхимы и клезофилла. Основные показатели мезоструктуры фотосинте-

тического аппарата (по А. Т. Мокроносову) включают: площадь, число клеток, хлорофилл, белок, объем клетки, количество хлоропластов в клетке, объем хлоропласта, площадь сечения хлоропласта и его поверхность. Анализ мезоструктуры и функциональной активности фотосинтетического аппарата у многих видов растений помогают определить наиболее часто встречающиеся значения исследуемых показателей и пределы варьирования отдельных характеристик. Согласно этим данным, основные показатели мезоструктуры фотосинтетического аппарата (Мокроносов, 19В1):

I - площадь листа;

II - число клеток на 1 см2,

III - хлорофилл на 1 дм2, ключевые ферменты на 1 дм2, объем клетки, тыс. мкм2 , число хлоропластов в клетке;

IV - объем хлоропластов, площадь проекции хлоропласта, мкм2,