Тросовые системы в космосе

Страница 5

Использование длинного троса позволяет осуществить торможение орбитального самолета без затрат топлива. Для этого с орбитального самолета на тросе в верхние слои атмосферы спускается баллон, который испытывает значительные аэродинамические сопротивление. Натяжение троса передает эту тормозящую силу орбитальному самолету. После достаточного для посадки снижения скорости баллон отцепляется и сгорает в атмосфере. При использовании крыла вместо баллона можно из­менять плоскость орбиты орбитального самолета, если крыло движется не в плоскости орбиты, а с боковым смещением, меняющимся в резонан­се с орбитальным движением. Эта операция образно сравнивается с хож­дением под парусом, только парус оказывается отнесенным от корабля на 100 км!

Интересный способ маневрирования на орбите возникает при периоди­ческом изменении длины троса в резонансе с орбитальным движением. Это приводит к вековой эволюции (правда, очень медленной) орбиты центра масс связки. Если учитывать сплюснутость Земли, то аналогичный эффект наблюдается и при изменении длины троса на удвоенной орбиталь­ной частоте.

"Космический эскалатор". Он сос­тоит из нескольких ступеней - радиальных связок. Запускаемый на высо­кую орбиту спутник подлетает к нижнему концу каждой связки и по тро­су перетягивается на ее верхний конец, затем перелетает к следующей связке и таким образом может быть доставлен, например, на геостационарную ор­биту. Постепенное снижение орбит связок, образующих ступени косми­ческого эскалатора, может компенсироваться путем использования тросов как электромагнитных двигателей, а также частично за счет встречного по­тока полезных грузов, возвращаемых с высоких орбит на Землю. По имею­щимся оценкам, космический эскалатор позволяет добиться заметной эко­номии топлива.

Более реальным, чем земной, представляется лунный "космический лифт". В своем движении вокруг Земли Луна остаётся все время повернутой к Земле одной и той же стороной. Это обстоятельство позво­ляет прикрепить, например, к обратной стороне Луны космическую стан­цию на тросе, вытянутом вдоль линии Земля - Луна. Эта систе­ма, по существу, представляет собой вариант радиальной связки. Её необычность состоит в том, что одним из тел, соединённых тросом, является естественное небесное тело. В отличие от зем­ного космического лифта трос для лунного лифта, изготовленный из современных высокопрочных материалов, может иметь весьма скромные характеристики (средняя погонная масса ~1 кг/км, сечение ~1 мм^2). Привязной спутник Луны может быть использован не только для обмена грузами с поверхностью Луны. Факт удержания космической станции за обратной стороной Луны вблизи коллинеарной точки либрации L2 систе­мы Земля — Луна имеет и самостоятельное значение. Как известно, дви­жение свободного космического аппарата вблизи точки L2 неустойчиво. Вопросам активной стабилизации движения космического аппарата в окре­стности точки L2 посвящено большое количество работ. В то же время спутник, привязанный тросом, в окрестности точки L2 не требует никакого управления: его стабилизация имеет пассивный ха­рактер.

Подъем грузов с поверхности Луны может осуществляться не только с помощью стационарно закрепленной тросовой системы. Подъём грузов с помощью вращающейся связки двух спутников. Вращательное и орбитальное движения связки подобраны так, чтобы в пе­риселении один из спутников подходил к поверхности Луны с нулевой относительной скоростью и захватывал груз. В апоселении груз отцепля­ется и выводится на окололунную орбиту. Трос в этой связке должен иметь длину несколько сотен километров.

Высказана оригинальная идея использования естественных спут­ников Марса — Фобоса и Деймоса - в качестве основы для "космического эскалатора". Для этого с Фобоса и Деймоса в направлении к Марсу и от Марса выпускаются тросы длиной несколько тысяч километров. Такая возможность, как и в случае Луны, обусловлена неизменной ориентацией этих спутников в орбитальных осях, а также слабостью их собственного гравитационного поля. Спутник, поднимающий грузы с поверхности Марса, сначала прибы­вает на нижний конец тросовой системы Фобоса, затем передвигается вдоль троса на ее верхний конец и перелетает на нижний конец тросовой системы Деймоса. С ее верхнего конца спутник выходит уже на траекторию межпла­нетного перелета. Система тросов из кевлара погонной массой ~20 кг/км и общей массой ~300 т дает экономию 10 т топлива на каждом запуске 20 т полезной нагрузки. Конечно, "марсианский эскалатор" —дело завтрашнего дня. Однако уже сегодня марсианская автоматическая стан­ция может быть оснащена зондом, выпускаемым на тросе на удаление 50 км от основного спутника для измерения градиентов параметров плаз­мы и магнитного поля. С той же целью с посадочного аппарата на Фобосе можно развернуть гирлянду датчиков, соединенных последовательно тросами суммарной длиной 50-60 км при массе не более 1 кг.

Сцепление космического аппарата тросом с малыми телами Солнечной системы авторы предлагают использовать для изменения траектории при близком прилете. Собственное гравитационное поле небольшого асте­роида недостаточно для совершения гравитационного маневра, но если "загарпунить" астероид с пролетающего космического аппарата, то сила натяжения троса с успехом заменит силу притяжения. После совершения маневра трос отцепляется и остается "на память" астероиду.

Как уже отмечалось, современные материалы не позволяют сделать земной космический лифт с приемлемыми характеристиками. Однако можно сделать его "половину", т.е. протянуть трос от геостационарной орбиты не до самой поверхности Земли, а лишь на половину этого расстоя­ния. Речь идет о геосинхронной радиальной связке, в которой верхний спутник находится несколько выше геоста­ционарной орбиты, а нижний спутник находится посредине между геоста­ционарной орбитой и Землей. Соединительный трос из высокопрочных материалов может иметь в этом случае приемлемую погонную массу ~1 кг/км (сечение ~1 мм^2). Привлекательной в этом проекте является возможность иметь геостационарный спутник на высоте, вдвое меньшей высоты геостационарной орбиты.

Для индустриализации космоса могут потребоваться большие произ­водственные комплексы. На рис. Такой комплекс в виде кольца из большого числа производственных, исследовательских и жилых модулей, соединенных последовательно тросами. Такое соединение позволяет расположить модули на близком расстоянии друг от друга, что невозможно в свободном полете из-за неизбежного рассогласовагия скоростей и относительного дрейфа соседних модулей, приводящего к их столкновению. В устойчивом кольце связанных тро­сами спутников такой дрейф не происходит.

Имеются и менее грандиозные проекты локальных "созвездий" спут­ников и космических платформ, стабилизируемых в вертикальном направлении гравитационным градиентом, а в горизонтальном направле­нии - вращением или разностью аэродинамических сил.

Этот список можно еще продолжить. Тем более, что обсуждение каж­дого варианта применения тросовых систем в космосе рождает новые варианты: заряд "тросовых" идей еще далеко не исчерпан. Конечно, не все они равнозначны по предоставляемым выгодам, затратам и срокам на реализацию. Так, перспектива применения тросовых систем представляется более отдаленной, чем применение систем с электромагнитным взаимодействием троса или системы с атмо­сферным зондом. Тем не менее исследование динамики этих систем наряду с системами ближайшей перспективы ни в коей мере не является преждевременным. Более того, оно необходимо для глубокого и всестороннего понимания реальных возможностей использования тро­сов в космосе и создания более полного динамического Портрета этого нового класса космических систем.

Применение тросовых систем в аэростатах с выносным баллонетом

Аэростат с выносным баллонетом