Происхождение вселенной

Происхождение вселенной

Содержание

Стр.

ВВЕДЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

1. ОПИСАНИЕ КОНСТРУКЦИИ МОТОГОНДОЛЫ . . . . . . . . . . . . . . .

 

2. СИЛОВОЙ РАСЧЕТ ВОЗДУХОЗАБОРНИКА . . . . . . . . . . . . . . . . . .

 

2.1.

Исходные данные для силового расчета . . . . . . . . . . . .

 

2.2

Распределение расчетных аэродинамических нагрузок по длине воздухозаборника . . . . . . . . . . . . . . . . . . . . .

 

2.3.

Распределение нагрузок по длине и по сечениям воздухозаборника . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

2.4.

Распределение аэродинамических нагрузок по внутренней поверхности воздухозаборника . . . . . . . . . .

 

2.5.

Определение равнодействующей по сечениям воздухозаборника от внешних и внутренних аэродинамических нагрузок . . . . . . . . . . . . . . . . . . . . .

 

2.6.

Нагрузки на болты крепления воздухозаборника к проставке . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

2.7.

Проверка прочности воздухозаборника самолета . . . . . .

 

2.8.

Автоматизация расчета аэродинамических нагрузок воздухозаборника . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

3. Технологический процесс изготовления воздухозаборника канала сотовой звукопоглощающей конструкции . . . . . . . . . . . . . . . . . . . .

 

3.1. Технологичность конструкции воздухозаборника . . . . . . . . . . . . . . .

 

3.2. Применяемые материалы и оборудование . . . . . . . . . . . . . . . . . . . .

 

3.3. Технологический процесс сборки обшивок и элементов каркаса

 

3.4. Использование в конструкции воздухозаборника композиционных материалов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

3.4.1

Методы получения ПКМ . . . . . . . . . . . . . . . . . . . . . . .

 

4. ОХРАНА ТРУДА И ОКРУЖАЮЩЕЙ СРЕДЫ . . . . . . . . . . . . . . . . .

 

5. ЭКОНОМИКА И ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА . . . . . . . . . . . .

 

ЛИТЕРАТУРА

 

ПРИЛОЖЕНИЕ

 
   

ВВЕДЕНИЕ

На летательном аппарате с воздушно-реактивными двигателями применяются различные входные устройства.

Они служат для торможения потока воздуха перед поступлением его в двигатель, а основными требованиями, предъявляемыми к входным устройствам, являются:

– обеспечение высоких значений коэффициента сохранения полного давления;

– создание равномерного потока на входе в двигатель или желаемой (допустимой) неравномерности;

– минимальное аэродинамическое сопротивление;

– обеспечение устойчивой и эффективной работы во всем требуемом диапазоне режимов полета и режимов работы двигателя.

Выбор входного устройства во многом зависит от расчетного числа М полета летательного аппарата, потребного диапазона отклонения чисел М от расчетного, места расположения силовой установки на летательном аппарате, типа применяемых двигателей и ряда других факторов.

На самолете Ту-334 двигатели размещены на хвостовой части фюзеляжа (рис. 1), что позволяет:

а) обеспечить аэродинамически "чистое" крыло с максимально возможным использованием его размаха для размещения средств механизации (закрылков, предкрылков и т.п.) с целью получения высокого аэродинамического качества крыла и высоких значений Сy при взлете и при посадке;

б) создать необходимые условия для работы воздухозаборников, если достаточно далеко отодвинуть их от фюзеляжа, чтобы обеспечить слив пограничного слоя. Изменение угла подхода воздушного потока к воздухозаборнику двигателя, расположенного на хвостовой части фюзеляжа, примерно вдвое меньше изменения углов атаки крыла (или изменения угла тангажа самолета), в то время как у заборников, поставленных под крылом или у передней кромки крыла, это изменение угла подхода воздушного потока больше, чем изменение угла атаки крыла;

в) улучшить характеристики продольной путевой и поперечной устойчивости за счет:

Положение мотоустановок на самолете

Рис. 1

– работы гондол двигателей и их пилонов как дополнительного горизонтального оперения;

– малого разворачивающего момента двигателей при остановке одного из них;

г) улучшить комфорт и повысить безопасность пассажиров за счет уменьшения шума в кабине (низкочастотного от выхлопной реактивной струи и высокочастотного от воздухозаборников и воздушных каналов) и за счет размещения двигателей позади герметической кабины;

е) повысить пожарную безопасность, вследствие того что:

– двигатели удалены от пассажирской кабины и от топливных баков;

ж) повысить эксплуатационные характеристики силовой установки и всего самолета в целом за счет:

– обеспечения возможности замены целиком всей гондолы вместе с двигателем;

– создания достаточно хороших условий для подхода к двигателям;

з) предохранить двигатели от попадания в них воды и посторонних предметов при работе двигателей на земле благодаря достаточно высокому расположению заборников от земли и от попадания камней из под шасси за счет прикрытия заборников крылом и закрылками;

и) обеспечить возможность установки двигателей с большей тягой (при сохранении или при небольшом увеличении их веса) вследствие малого плеча тяги относительно центра тяжести самолета;

к) улучшить работу устройств для реверсирования тяги двигателей по сравнению с двигателями, размещенными в корне крыла.

В зависимости от расчетной скорости полета входные устройства можно разделить на два типа: