Система автоматического регулирования температуры газов в газотурбинном двигателе
Система автоматического регулирования температуры газов в газотурбинном двигателе
Структурная схема:
где:
ОР – объект регулирования;
ЧЭ – чувствительный элемент;
У – усилитель;
ИМ – исполнительный механизм;
КЗ – корректирующее звено;
Значения заданных параметров для исследуемой системы
|
Коэффициент усиления |
Постоянная времени | |||||||||
Объекта регулир-я |
Чувств. эл-та |
|
Исполн. мех-ма |
Коррек звена |
К1 |
К2 |
К3 |
К4 |
Т0 |
Т1 | |
|
|
К3 |
К4 р |
К5р |
1,1 |
1 |
10 |
0,5 |
3 |
1,1 | |
Описание работы реальной системы:
В данной работе рассматривается система автоматического регулирования температуры газов в газотурбинном двигателе самолета. КЗ, которое в данном случае является реальным дифференцирующим звеном, реагирует на поступающий сигнал от ОР и дифференцируя его во времени, прогнозирует изменение температуры, т.е., система реагирует на малейшее отклонение температуры от заданной, не допуская критического ее понижения. Затем сигнал из сумматора поступает на усилитель, а с него на исполнительный механизм, который выполняет
требуемую коррекцию температуры. ХОД РАБОТЫ
1) САУ разомкнута.
Структурная схема:
|
На графике видно, что система неустойчива.
При аналитической проверке система будет являться устойчивой, если все корни его характеристического уравнения лежат в левой полуплоскости. Проверяется это при помощи критерия устойчивости Гурвица. Согласно ему, для того, чтобы корни характеристического уравнения лежали строго в левой полуплоскости, необходимо и достаточно, чтобы главный определитель матрицы Гурвица и все его диагональные миноры были больше нуля.
Передаточная функция:
где 3,3S3 +4,1S2 +S – характеристическое уравнение,
в котором а0=3,3, а1=4,1, а2=1, а3=0.
Поскольку свободный член характеристического уравнения равен нулю, значит один из корней равен нулю, и отсюда следует, что система находится на грани устойчивости.
2)САУ замкнута.
Структурная схема:
|
На графике зависимости видно, что система не устойчива.
Передаточная функция:
где 3,3S3 +4,1S2 +S +5,5– характеристическое уравнение,
в котором а1=3,3, а2=4,1, а3=1, а4=5,5
Исследуем устойчивость системы с помощью критерия устойчивости Гурвица:
D1=а1=3,3>0,
D2==а1·а2-а0·а3=4,1-18,15= -14,05<0
Следовательно, замкнутая система не устойчива.
2)САУ с корректирующим звеном.
На этом этапе лабораторной работы рассматривается данная система, но уже с корректирующим звеном, для которого мы экспериментальным путём подбираем коэффициент коррекции, при котором система была бы устойчивой. Рассматривается два варианта, при k=0,1 и k=2.
а) Структурная схема:
|
График зависимости показывает, что система не устойчива.
Передаточная функция:
где – характеристическое уравнение,
в котором а0=3, а1=4, а2=1, а3=5,5
Исследуем устойчивость системы с помощью критерия устойчивости Гурвица:
D1=а1=3>0,
D2==а1·а2-а0·а3=4,1·1-5,5·3,3=4,1-18,15<0
Отсюда можно сделать вывод, что при значении коэффициента k=0,1 система не устойчива.
2)
|
График зависимости показывает, что система не устойчива.
Передаточная функция:
где – характеристическое уравнение,
в котором а0=1,8, а1=3,9, а2=1, а3=5,5
Исследуем устойчивость системы с помощью критерия устойчивости Гурвица:
D1=а1=1,8>0,
D2==а1·а2-а0·а3=3,9·5,5-1·1,8=19,65<0
Отсюда можно сделать вывод, что при значении коэффициента К=2 система устойчива.
Вывод:
В данной лабораторной работе рассматривалась САУ регулирования температуры газов, поверялась ее устойчивость в зависимости от структуры.
В первом случае моделировалась разомкнутая САУ. Результаты исследования показали, что она находится на границе устойчивости (температура газа в газотурбинном двигателе непрерывно росла с течением времени), что указывает на ненадежность системы, так как она может в любой момент перейти в неустойчивое состояние.