Солнечная атмосфера

Солнечная атмосфера

Атмосфера Земная атмосфера — это воздух, ко­торым мы дышим, привычная нам га­зовая оболочка Земли. Такие обо­лочки есть и у других планет. Звёзды целиком состоят из газа, но их внеш­ние слои также именуют атмосферой. При этом внешними считаются те слои, откуда хотя бы часть излучения может беспрепятственно, не погло­щаясь вышележащими слоями, уйти в окружающее пространство.

Фотосфера

Солнца начинается на 200—300 км глубже видимого края солнечного диска. Эти самые глубокие слои атмосферы называют фотосфе­рой. Поскольку их толщина составля­ет не более одной трёхтысячной до­ли солнечного радиуса, фотосферу иногда условно называют поверхно­стью Солнца.

Плотность газов в фотосфере при­мерно такая же, как в земной страто­сфере, и в сотни раз меньше, чем у поверхности Земли. Температура фо­тосферы уменьшается от 8000 К на глубине 300 км до 4000 К в самых верхних слоях. Температура же того среднего слоя, излучение которого мы воспринимаем, около 6000 К.

При таких условиях почти все мо­лекулы газа распадаются на отдель­ные атомы. Лишь в самых верхних слоях фотосферы сохраняется отно­сительно немного простейших моле­кул и радикалов типа Н2, ОН, СН.

Особую роль в солнечной атмосфере играет не встречающийся в I земной природе отрицательный ион водорода, который представляет собой протон с двумя электронами. Это необычное соединение возникает в тонком внешнем, наиболее «холод­ном» слое фотосферы при «налипании» на нейтральные атомы водорода отрицательно заряженных свободных электронов, которые доставляются легко ионизуемыми атомами кальция, натрия, магния, железа и других металлов. При воз­никновении отрицательные ионы водорода излучают большую часть видимого света. Этот же свет ионы жадно поглощают, из-за чего непро­зрачность атмосферы с глубиной быстро растёт. Поэтому видимый край Солнца и кажется нам очень резким.

Почти все наши знания о Солнце основаны на изучении его спектра — Узенькой разноцветной полоски, имеющей ту же природу, что и радуга. Впервые, поставив призму на пути солнечного луча, такую полоску получил Ньютон и воскликнул:

«Спектрум!» (лат. spectrum — «виде­ние»). Позже в спектре Солнца заметили тёмные линии и сочли их границами цветов. В 1815 г. немецкий физик Йозеф Фраунгофер дал первое подробное описание таких линий в солнечном спектре, и их стали называть его именем. Оказалось, что фраунгоферовы линии соответствуют эким участкам спектра, которые сильно поглощаются атомами различных веществ (см. статью «Анализ Видимого света»). В телескоп с большим увеличени­ем можно наблюдать тонкие детали фотосферы: вся она кажется усыпанной мелкими яркими зёрнышками — гранулами, разделёнными сетью узких тёмных дорожек. Грануляция является результатом перемешивания всплывающих более тёплых потоков газа и опускающихся более холодных. Разность температур между ними в наружных слоях сравнительно невелика (200-300 К), но глубже, в конвективной зоне, она больше, и перемешивание происходит значительно интенсивнее. Конвекция во внешних слоях Солнца играет огромную роль, определяя общую структуру атмосферы.

В конечном счёте именно конвекция в результате сложного взаимодействия с солнечными магнитными полями является причиной всех многообразных проявлений солнечной активности. Магнитные поля участвуют во всех процессах на Солнце. Временами в небольшой области солнечной атмосферы возникают концентрированные магнитные поля, в несколько раз более сильные, чем на Земле. Ионизованная плазма — хороший проводник, она не может перемешиваться поперёк линий магнитной индукции сильного магнитного поля. Поэтому в таких местах перемешивание и подъём горячих газов снизу тормозится, и возникает тёмная область — солнечное пятно. На фоне ослепительной фотосферы оно кажется совсем чёрным, хотя в действи­тельности яркость его слабее только раз в десять.

С течением времени величина и форма пятен сильно меняются. Возникнув в виде едва заметной точки — поры, пятно постепенно увеличивает свои размеры до нескольких десятков тысяч километров. Крупные пятна как правило, состоят из тёмной час­ти (ядра) и менее тёмной — полуте­ни, структура которой придаёт пятну вид вихря. Пятна бывают окружены более яркими участками фотосферы, называемыми факелами или факель­ными полями.

Фотосфера постепенно перехо­дит в более разреженные внешние слои солнечной атмосферы — хро­мосферу и корону.

ХРОМОСФЕРА

Хромосфера (греч. «сфера цвета») на­звана так за свою красновато-фиоле­товую окраску. Она видна во время полных солнечных затмений как клочковатое яркое кольцо вокруг чёрного диска Луны, только что за­тмившего Солнце. Хромосфера весь­ма неоднородна и состоит в основ­ном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы. Температура этих хромосферных струй в два-три раза выше, чем в фотосфере, а плотность в сотни тысяч раз меньше. Общая протяжённость хромосферы 10— 15 тыс. километров.

Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в неё из конвективной зоны. Вещество нагревается примерно так же, как если бы это происходило в гигант­ской микроволновой печи. Скорости тепловых движений частиц возраста­ют, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится го­рячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоев солнечной ат­мосферы, которые расположены вы­ше хромосферы.

Часто во время затмений (а при помощи специальных спектральных приборов — и не дожидаясь затме­ний) над поверхностью Солнца мож­но наблюдать причудливой формы «фонтаны», «облака», «воронки», «кус­ты», «арки» и прочие ярко светящие­ся образования из хромосферного вещества. Они бывают неподвижны­ми или медленно изменяющимися, окружёнными плавными изогнутыми струями, которые стекают в хромосферу или вытекают из неё, под­нимаясь на десятки и сотни тысяч километров. Это самые грандиозные образования солнечной атмосфе­ры — протуберанцы. При наблюдении в красной спектральной линии, излучаемой атомами водорода, они кажутся на фоне солнечного диска тёмными, длинными и изогнутыми волокнами.

Протуберанцы имеют примерно ту же плотность и температуру, что и Хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними сло­ями солнечной атмосферы. Протуберанцы не падают в хромосферу пото­му, что их вещество поддерживается магнитными полями активных обла­стей Солнца.

Впервые спектр протуберанца вне затмения наблюдали французский ас­троном Пьер Жансен и его англий­ский коллега Джозеф Локьер в 1868 г. Щель спектроскопа располагают так, чтобы она пересекала край Солнца, и если вблизи него находится протубе­ранец, то можно заметить спектр его излучения. Направляя щель на различные участки протуберанца или хромосферы, можно изучить их по час­тям. Спектр протуберанцев, как и хромосферы, состоит из ярких линий, главным образом водорода, гелия и кальция. Линии излучения других хи­мических элементов тоже присутству­ют, но они намного слабее.

Некоторые протуберанцы, про­быв долгое время без заметных изме­нений, внезапно как бы взрываются, и вещество их со скоростью в сотни километров в секунду выбрасывается в межпланетное пространство. Вид хромосферы также часто меняется, что указывает на непрерывное движе­ние составляющих её газов.

Иногда нечто похожее на взрывы происходит в очень небольших по размеру областях атмосферы Солнца. Это так называемые хромосферные вспышки. Они длятся обычно не­сколько десятков минут. Во время вспышек в спектральных линиях во­дорода, гелия, ионизованного кальция и некоторых других элементов свечение отдельного участка хромосферы внезапно увеличивается в десятки раз. Особенно сильно возрастает ультра­фиолетовое и рентгеновское излуче­ние: порой его мощность в несколь­ко раз превышает общую мощность излучения Солнца в этой коротковол­новой области спектра до вспышки.

Пятна, факелы, протуберанцы, хромосферные вспышки — всё это проявления солнечной активности. С повышением активности число этих образований на Солнце стано­вится больше.