Мир Галактик (Галактики и звездные системы)
Страница 12
В следствии того, что шаровые скопления располагаются симметрично по отношению к центру Галактики, а Солнце находится далеко от него, почти все шаровые скопления должны наблюдаться в одной половине неба, в той, в которой находится галактический центр.
Если в каждом из известных шаровых скоплений в среднем имеется немного менее миллиона звёзд, то общее число звёзд в шаровых скоплениях составит около 100 миллионов. Это только одна тысячная доля всех звёзд Галактики.
Имеется ещё один тип членов Галактики - так называемые звёздные ассоциации. Они были открыты академиком В.А.Амбарцумяном, который обнаружил, что наиболее горячие звёзды-гиганты, расположены на небе как бы отдельными гнёздами. Обычно в таком гнезде два-три десятка звёзд - горячих гигантов спектральных классов. Ассоциация занимает большой объем, размером в несколько десятков или сотен парсек, в который обычно порядком, как и в другие места Галактики, входят в большом количестве звезды-карлики и звёзды средней светимости.
Звёзды горячие гиганты движутся со скоростью 5-10 км/с, и им требуется всего несколько сотен тысяч лет или, самое большее, несколько миллионов лет, чтобы уйти из ассоциации. Поэтому факт существования горячих гигантов в звёздных ассоциациях указывает на то, что эти звёзды недавно сформировались в ассоциациях и не успели ещё из них уйти.
Именно открытие звёздных ассоциаций привело к утверждению, что наряду со старыми звёздами, есть и молодые и очень молодые звёзды, что звёздообразование в Галактике было длительным процессом и продолжается в наши дни.
По расположению в Галактике все звёзды и все другие объекты можно разделить на три группы.
Объекты первой группы сосредоточены в галактической плоскости, т.е. образуют плоские подсистемы. К этим объектам относятся звёзды горячие сверхгиганты и гиганты, пылевая материя, газовые облака и рассеянные звёздные скопления. Характерно, что в состав рассеянных скоплений в основном входят именно те объекты, которые сами по себе тоже образуют плоские подсистемы.
Вторую группу образуют объекты, располагающиеся одинаково часто у плоскости симметрии Галактики и на значительном расстоянии от неё. Они образуют сферические подсистемы. В числе таких объектов желтые и красные субкарлики, желтые и красные гиганты, шаровые скопления.
Третью группу составляют промежуточные подсистемы. В них объекты сосредоточены у плоскости Галактики, но не так сильно, как у плоских подсистем. Промежуточные подсистемы составляют красные и желтые звёзды-гиганты, желтые и красные звёзды-карлики, а также особые переменные звёзды, называемые звёздами типа Мира Кита, очень сильно и неправильным образом изменяющие свой блеск.
Оказалось, что объекты различных подсистем отличаются друг от друга не только расположением в Галактике, но и своими скоростями. Объекты сферических подсистем имеют наибольшую скорость движения в направлении. Перпендикулярном к плоскости Галактики, а у объектов плоских подсистем эта скорость наименьшая.
Удалось также установить, что объекты различных подсистем отличаются и химическим составом: звёзды плоских подсистем богаче металлами, чем звёзды сферических подсистем.
Открытие существования объектов различных подсистем в Галактике имеет большое значение. Оно показывает, что звёзды разных типов формировались в разных местах Галактики и при различных условиях.
Из ядра должны выходить спиральные ветви. Эти ветви, огибая ядро постепенно расширяясь и разветвляясь теряют яркость, и на некотором расстоянии их след пропадает.
Спиральные ветви других Галактик состоят из звёзд - горячих гигантов и сверхгигантов, а также из пыли и газа - водорода.
Чтобы обнаружить спиральные ветви нашей Галактики, нужно проследить расположение в ней звёзд - горячих гигантов, а так же пыли и газа. Эта задача оказалась очень сложной из-за того, что спиральную структуру нашей Галактики мы наблюдаем изнутри и различные части спиральных ветвей проецируются друг на друга.
Надежды подает излучение нейтрального водорода по длине волны 21 см. В двух небольших спектрах, направленных на центр и антицентр Галактики. Однако исследования пока провести не удаётся и поэтому картина не полная. Хотя уже начинает намечаться расположение спиральных ветвей потому, что водород обычно соседствует со звёздами - горячими гигантами, определяющими форму спиральных ветвей.
Места уплотнения водорода должны повторять рисунок спиральной структуры Галактики.
Большое преимущество использования излучения нейтрального водорода состоит в том, что оно длинноволновое, находится в радиодиапазоне и для него межзвёздная материя практически совершенно прозрачна. 21-сантиметровое излучение без каких-либо искажений доходит до нас из самых далёких областей Галактики.
В безлунные осенние вечера вдали от ярко освещенных домов и улиц, любуясь звёздным небом, можно увидеть белую полосу, протянувшуюся через все небо. Это Млечный Путь.
Согласно одному из древних мифов, Млечный Путь – это дорога с Олимпа на Землю. Согласно другому – это пролитое Герой молоко.
Млечный Путь опоясывает небесную сферу по большому кругу. Жителям северного полушария Земли, в осенние вечера удается увидеть ту часть Млечного Пути, которая проходит через Кассиопею, Цефей, лебедь, Орел и Стрельца, а под утро появляются другие созвездия. В южном полушарии Земли Млечный Путь простирается от Стрельца к созвездиям Скорпион, Циркуль, Центавр, Южный Крест, Киль, Стрела.
Млечный Путь, проходящий через звездную россыпь южного полушария, удивительно красив и ярок. В созвездиях Стрельца, Скорпиона, Щита много ярко светящихся звездных облаков. Именно в этом направлении находится центр нашей Галактики. В этой же части Млечного Пути особенно четко выделяются темные облака космической пыли- темные туманности. Если бы не было этих темных, непрозрачных туманностей, то Млечный Путь в направлении к центру Галактики был бы ярче в тысячу раз.
Глядя на Млечный путь, нелегко вообразить, что он состоит из множества неразличимых невооруженным глазом звёзд. Но люди догадались об этом давно. Одну из таких догадок приписывают ученому и философу Древней Греции - Демокриту. Он жил почти на две тысячи лет раньше, чем Галилей, который впервые доказал на основе наблюдений с помощью телескопа звездную природу Млечного Пути. В своём знаменитом «Звездном вестнике» в 1609 году Галилей писал: «Я обратился к наблюдению сущности или вещества Млечного Пути, и с помощью телескопа оказалось возможным сделать её настолько доступной нашему зрению, что все споры умолкли сами собой благодаря наглядности и очевидности, которые и меня освобождают от многословного диспута. В самом деле Млечный Путь представляет собой не что иное, как бессчетное множество звёзд, как бы расположенных в кучах, в какую бы область не направлять телескоп, сейчас же становится видимым огромное число звёзд, из которых весьма многие достаточно ярки и вполне различимы, количество же звёзд более слабых не допускает вообще никакого подсчета».
Какое же отношение звёзды Млечного Пути имеют к единственной звезде Солнечной системы, к нашему Солнцу? Ответ сегодня общеизвестен. Солнце - одна из звёзд нашей Галактики, Галактики – Млечный Путь. Какое же место занимает Солнце в Млечном Пути? Уже из того факта, что Млечный Путь опоясывает наше небо по большому кругу, ученые сделали вывод, что Солнце находится вблизи главной плоскости Млечного Пути.
Чтобы получитъ более точное представление о положении Солнца в Млечном Пути, а затем и представить себе, какова в пространстве форма нашей Галактики, астрономы (В.Гершель, В.Я.Струве и др.) использовали метод звездных подсчетов, суть которых в том, что в различных участках неба подсчитывают число звёзд в последовательном интервале звёздных величин. Если допустить, что светимости звёзд одинаковы, то по наблюдаемому блеску можно судить о расстояниях до звезд, далее, предполагая, что звёзды в пространстве расположены равномерно, рассматривают число звёзд, оказавшихся в сферических объёмах, с центром в Солнце.