Наша галактика
Страница 2
Задача была трудной. В ту пору (конец ХУШ в.) ни до одной из звезд не было известно расстояние. Пришлось поэтому ввести ряд упрощающих предположений. Так, Гершель предположил, что все звезды распределены в пространстве равномерно. Там же, где наблюдаются сгущения звезд, в том направлении звездная система имеет большую протяженность. Пришлось также предположить, что все звезды излучают одинаковое количество света, а их видимая звездная величина зависит только от расстояния. И, наконец, мировое пространство Гершель считал абсолютно прозрачным. Все эти три допущения были, как мы теперь знаем, ошибочными, но ничего лучшего во времена Гершеля придумать было невозможно. На звездном небе Гершель выделил 1083 площадки и на каждой из них подсчитывал число звезд данной звездной величины. Предположив затем, что самые яркие звезды наиболее близки к Земле, Гершель принял их расстояние от Земли за единицу и в этих относительных масштабах построил схему нашей звездной системы. При этом Гершель полагал, что его телескопы позволяют видеть самые далекие звезды Галактики.
Схема строения Галактики по Гершелю была, конечно, далекой от действительности. Получалось, что поперечник Галактики равен 5800 св. годам, а ее толщина 11ОО св. годам, причем Солнечная система находится недалеко от галактического центра. Хотя в этой работе действительные размеры нашей звездной системы уменьшены по крайней мере в 15 раз и положение Солнца оценено неверно, не следует преуменьшать значение открытия Гершеля. Именно он впервые опытным путем доказал структурность звездной Вселенной, опровергнув популярные в ту пору взгляды о равномерном распределении звезд в бесконечном пространстве.
Следующий, весьма важный вклад в изучение Галактики внесли русские ученые. Воспитанник Дерптского (Тартуского) университета Василий Яковлевич Струве был первым астрономом, который в 1837 г. измерил расстояние до звезд. По его измерениям расстояние до Веги равно 26 св. годам, что весьма близко к современным результатам. Независимо от Струве в 1838г. Ф. Бессель (1784— 1846) измерил расстояние до звезды 61 Лебедя (11,1 св. лет), а затем Т Гендерсону (1798—1844) в 1839г. удалось отыскать самую близкую к нам звезду Альфу Центавра (4,3 св. года). Позднее расстояния до целого ряда звезд были измерены Пулковской обсерватории X. Петерсом (1806—1880).
Как тогда писали, «лот, закинутый в глубину мироздания, достал дно». Стали известны масштабы звездных расстояний. Нужно было продолжить работы Гершеля на более высоком уровне знаний. Этим и занялся В.Я. Струве.
Теоретически подсчитав, сколько звезд должны быть видимы в телескопы Гершеля и сколько он видел на самом деле, В. Я Струве пришел к фундаментальному открытию. Межзвездное пространство наполнено веществом, поглощающим свет звезд. Без учета этого межзвездного поглощения выяснить строение Галактики невозможно. Кстати оказать, оценка величины поглощения света, подсчитанная Струве, близка к современным оценкам.
В отличие от Гершеля, Струве не считал светимость звезд одинаковой. Но звезд с известным до них расстоянием было еще очень мало, и поэтому учесть светимость звезд Струве мог только приближенно.
В 1847 г вышел в свет обобщающий труд В.Я. Струве «Этюды звездной астрономии». В нем автор приходит к выводу, что сгущение звезд в плоскости Млечного Пути — реальное явление, и, следовательно, Галактика должна иметь форму плоского диска. По исследованиям Струве, Солнце расположено не в центре Галактики, а на значительном расстоянии от него. Размеры Галактики (с учетом поглощения света) получились большими, чем полагал Гершель. Границы нашей звездной система оказались недоступными для зондирования, и поэтому оценить параметры Галактики в целом В. Я Струве не смог.
В середине прошлого века некоторые астрономы предполагали, что в центре Галактики находится исполинское «центральное Солнце», заставляющее своим тяготением все звезды двигаться вокруг себя. Профессор Казанского университета М.А. Ковальский (1821—1884) доказал, что существование «центрального Солнца" вовсе не обязательно и звезды Галактики могут двигаться вокруг динамического центра, т.е. геометрической точки, являющейся центром тяжести всей звездной системы. Формулы Ковальского позволили по собственным движениям звезд найти направление на центр Галактики.
В 1927 г. голландский астроном Ян Оорт окончательно доказал, что все звезды Галактики обращаются вокруг ее центра. При этом Галактика в целом не вращается как твердое тело. Во внутренних областях Галактики (примерно до Солнца) угловые скорости звезд почти одинаковы. Однако далее к краям Галактики они постепенно убывают, но несколько медленнее, чем положено по третьему закону Кеплера. Орбитальная скорость Солнца составляет 250 км/с, причем Солнце завершает полный оборот вокруг центра Галактики примерно за 200 млн. лет.
Только в 1934 г. были уверенно определены следующие параметры нашей звездной системы: расстояние от Солнца до центра – 32 000 св. лет; диаметр Галактики 100 000 св. лет; толщена галактического «диска» 10 000 св. лет; масса 165 млрд. солнечных масс.
Общая схема строения Галактики современным данным представлена на рисунке.
В Галактике различают три главные части — диск, гало и корону. Центральное сгущение диска называется балджем. В диске сосредоточены звезды, порождающие явление Млечного Пути. Здесь же присутствуют многочисленные облака пыли и газа. Диаметр диска близок к 100 000 св. годам, наибольший и наименьший поперечники балджа соответственно близки к 20 000 и 30 000 св. лет.
Гало по форме напоминает слегка сплюснутый эллипсоид с наибольшим диаметром, немного превосходящим поперечник диска. Эту часть нашей звездной системы населяют главным образом старые и слабосветящиеся звезды, а газ и пыль там практически отсутствуют. Масса гало и диска примерно одинакова. Обе эти части Галактики погружены в огромную сферическую корону, диаметр которой в 5—10 раз больше диаметра диска. Возможно, что корона содержит главную массу Галактики в форме невидимого пока вещества («скрытой массы»). По некоторый оценкам эта «скрытая масса» примерно раз в 10 больше массы всех обычных звезд Галактики, сосредоточенных в диске и гало.
Такова общая картина. Важны и детали. Внутри Галактики существуют разные по масштабам звездные системы — от двойных звезд до скоплений из десятков тысяч звезд. Различают и более крупные подсистемы в нашей звездной системе. Существенный элемент структуры Галактики - межзвездная среда, пылевые и газовые туманнос-ти. Со всем этим более подробно мы сейчас и ознакомимся.
Очень многие звезды «предпочитают» странствовать не в одиночку, а парами. Вполне естественно считать, что близость компонентов в системе двойной звезды имеет глубокие причины. Две звезды объединились в одну систему не при случайной встрече в бескрайних просторах космоса (что весьма маловероятно), а возникли совместно. В последнем случае их физические свойства должны, по-видимому, быть сходными, хотя известны и такие пары звезд, где компоненты не имеют друг с другом почти ничего общего. Приведем примеры.
Рядом с Сириусом есть замечательная звездочка — это открытый в 1862 г. первый «белый карлик». В последнее время за спутником Сириуса («Песьей звездой» древних египтян) укоренилось даже собственное имя — Щенок. Щенок лишь вдвое уступает по массе Сириусу, а по объему—в 103 раз. Ясно поэтому, что плотность вещества спутника Сириуса очень велика. Если бы можно было этим веществом наполнить волейбольный мяч, последний приобрел бы весьма солидную массу—около 160 т!
Сириус и Щенок—система из двух солнц, двойная звезда. Но как не похожи они друг на друга. Впрочем, астрономам известны и другие, куда более странные содружества.
В созвездии Цефея есть двойная звезда, обозначаемая символом VV. Главная звезда — колоссальный холодный сверхгигант, по диаметру в 1200 раз превышающий Солнце. Его спутник—обычная и горячая звезда, по-видимому, с обширной, «толстой» атмосферой. Главная звезда превышает свой спутник по объему почти в 2 000 раз.