Планеты Солнечной системы

Страница 4

Позднее, в 50-е и 60-е гг. были накоплены и обобщены многочисленные измерения температур в различных точках поверхности Марса, в разные сезоны и времена суток. Из этих измерений следовало, что днём на экваторе температура может доходить до 300°К (+27°С), но уже к вечеру она падает до нуля, а к утру до 223°К (-50°С). На полюсах температура может колебаться от +10°С в период полярного дня до очень низких температур во время полярной ночи.

В 1956 г. к измерению температур был применён новый метод – радиоастрономический. Марс, как и всякое нагретое тело, испускает не только инфракрасное излучение, но и более длинноволновое, лежащее в радиодиапазоне. Его принято называть тепловым радиоизлучением, в отличие от нетеплового, связанного с различными электромагнитными и плазменными процессами. Измеряя поток теплового радиоизлучения, можно определить температуру планеты.

Первые такие измерения выполнили К. Майер, Т. Мак Каллаф и Р. Слонейкер в 1956 г. Они получили среднюю температуру поверхности Марса 218°К, т.е. заметно ниже, по инфракрасному излучению. Измерения, проведённые в последние годы с космических кораблей, показали, что на Марсе могут наблюдаться и ещё более низкие температуры, доходящие до 140°К - ниже точки замерзания углекислого газа.

Многочисленные ряды измерений радиотемператур Марса выполнены советскими учёными А. Д. Кузьминым, Ю. Н. Ветухновской, Б. Я. Лосовским, Б. Г. Кутузой и другими. Во время великого противостояния 1971 г., по их измерениям, средняя температура Марса составляла 198°К.

Различие температур дня и ночи, полярных и тропических районов, зимы и лета приводит к возникновению ветров, имеющих подчас скорости 40-50 мсек. Система воздушной циркуляции на Марсе изучается сейчас различными методами многими учёными. Важный вклад в развитие теории циркуляции марсианской атмосферы внёс советский учёный, специалист по физике атмосферы Г. С. Голицин. Он показал, при каких условиях в атмосфере Марса могут возникать ветры, имеющие силу урагана, и формироваться смерчи.

Среди образований, обнаруженных на поверхности Марса, всеобщее внимание русло образные протоки, или меандровые долины. Их внешний вид, наличие «притоков» вряд ли можно объяснить иначе, чем, предложив, что это – русла рек.

Однако на Марсе в настоящее время реки течь не могут, там вообще не может быть жидкой воды. Причина этого состоит в том, что при тех низких давлениях, которые господствуют на Марсе, вода закипает при очень низких температурах. Никакая другая жидкость не могла образовать наблюдаемых русел: лава быстро застывает, а жидкая углекислота даже в земных условиях не может существовать.

Итак, единственное возможное объяснения меандров на Марсе – это образование водных потоков, рек. Сейчас для него нет необходимых условий – значит, они были в прошлом. Для этого нужно допустить, что в более ранние эпохи атмосферное давление на Марсе было значительно выше, чем в настоящее время.

БОЛЬШАЯ ПЫЛЕВАЯ БУРЯ И ЕЁ ПРИЧИНЫ.

В июле 1971 г., согласно наблюдениям на Шемахинской астрофизической обсерватории атмосфера планеты была во всех длинах волн, и в ней не наблюдалось ни синих, ни жёлтых облаков. Южная полярная шапка чётко выделялась на фоне материков, превышая их по яркости втрое. Была видна и северная полярная шапка. Контраст морей и материков в красных лучах составлял около 30% и был примерно таким, как в первой половине августа 1956 г., до начала пылевой бури.

В конце августа – начале сентября 1956 г. в южном полушарии разыгралась сильная пылевая буря, скрывшая на две недели южную полярную шапку и резко понизившая контрасты «моря-материки». Новая пылевая буря, только ещё большего масштаба, разыгралась на Марсе во второй половине сентября 1971 г.

В отличие от 1956 г., на этот раз пылевая буря была более длительной и устойчивой. Она началась 22 сентября, а 11 ноября, когда «Маринер-9» на подлёте начал фотографировать Марс, пылевая буря продолжалась. Она была столь интенсивной, что, по отзывам американских специалистов, планета имела «венероподобный вид».

15-20 ноября наступило, казалось, просветление. Но потом всё началось снова, и буря затрудняла научные иследования поверхности Марса. Лишь около 10 января 1972 г. пылевая буря прекратилась, и планета приняла свой обычный вид.

Какие же причины вызвали столь мощную и пылевую бурю? Американские учёные К. Саган, Дж. Веверка и П. Гираш на основании теоретического исследования ветровых режимов на Марсе пришли к выводу, что наиболее эффективным механизмом подъёма пыли с марсианской поверхности являются смерчи или «пылевые дьяволы». Образование смерчей зимой невозможно из-за слабого солнечного нагрева. Летом и в экваториальных районах на плоских пространствах смерчи должны образовываться благодаря интенсивной инсоляции, на склонах же их могут подавлять наклонные ветры. Для подъёма пыли нужна скорость ветра в 80мсек. На Марсе имеются области, где такие скорости наблюдаются. Смерчи образуются преимущественно вблизи перигелия, когда интенсивность инсоляции на 23% больше, чем во время «среднего» противостояния, и на 47% больше, чем в афелии. Вот почему чаще всего пылевые бури бывают в периоды великих противостояний, когда лето в южном полушарии совпадает с прохождением Марса через перигелий.

Астрономы ожидали новую пылевую бурю в июле-августе 1973 г., когда Марс должен был снова пройти через перигелий, но буря «опоздала» – она началась лишь 13 октября появлением трёх пылевых облаков. По мнению американских астрономов пылевая буря 1973 г., продолжавшаяся до ноября, уступает лишь большой пылевой буре 1971 г. и превосходит бурю 1956 г.

Исследование рельефа Марса радиолокационным методом и по интенсивности полос СО2 в спектре планеты над различными областями подтверждают предположения о том, что моря - не низины, как считали Поллак и Саган, в области перепадауровней. Материки покрыты слоем тонко раздробленной светлой пыли, моря – более крупными зёрнами, возможно, иного состава. Таково в настоящее время наиболее вероятное объяснение природы марсианских «морей».

ЕСТЬ ЛИ ЖИЗНЬ НА МАРСЕ.

Несмотря на все успехи космических и наземных методов исследования «мёртвой» природы Марса, перед астрономами неотступно стоял всё тот же давний вопрос: существует ли жизнь на Марсе? И вот уже в 1976 году американские учёные предприняли попытку решить его путём проведения тщательно продуманной серии экспериментов на поверхности Марса приборами спускаемых аппаратов «Викинг»

Программа «Викинг»готовилась несколько лет, Два космических аппарата были запущены 20 августа и 9 сентября 1975 г.

«Викинг-1» 19 июня 1976г., после 10 месяцев пути, вышел на ареоцентрическую орбиту, а спустя ещё месяц – 20 июля – посадочный блок совершил спуск и посадку в области Хризе. Приборы «Викинга-1» немедленно начали передачу панорамных снимков поверхности планеты. Район посадки имеет довольно ровный рельеф и представляет собой песчаную пустыню с большим количеством камней, на половину занесённых слоем тонкой пыли.

Условия в месте посадки блока оказались довольно суровыми. Рентгеновский флуоресцентный спектрометр передал предварительные сведения о составе марсианской почвы:12-16% железа, 13-15% кремния, 3-8 % кальция, 2-7% алюминия, 0.5-2% титана.

В месте спуска посадочного блока «Викинга-2» – в светлой области Утопия - картина оказалась почти такой же, как и в области Хризе. Такие же камни и глыбы среди песчаной пустыни, некоторые из них испещрены ямками и напоминают пемзу.

Но всех в первую очередь интересовали результаты экспериментов по забору и анализу образцов грунта на присутствие микроорганизмов. 31 июля американские учёные пришли в крайнее возбуждение. Анализатор газообмена показал 15-кратное увеличение содержания кислорода по сравнению с нормой после двух часов инкубации. Спустя ещё 24 часа концентрация кислорода выросла ещё на 30%, а затем начала падать и спустя неделю упала до нуля.

Во втором эксперименте часть пробы загружалась в резервуар с питательным бульоном, в котором имелись радиоактивные атомы. Анализатор детектировал выделявшиеся газы и обнаружил увеличение двуокиси углерода, почти такое же, как при анализе биологически активных образцов земной почвы. Но вскоре и в этом приборе уровень отчётов упал почти до нуля.