Принцип работы и назначение телескопа
Страница 2
При создании телескопов со времен Галилея придерживаются следующего правила: выходной зрачок телескопа не должен быть больше зрачка наблюдателя. Легко сообразить, что в противном случае часть света, собранного объективом, будет напрасно утеряна. Очень важной величиной, характеризующей объектив телескопа, является его относительное отверстие, т.е. отношение диаметра объектива телескопа к его фокусному расстоянию. Светосилой объектива называется квадрат относительного отверстия телескопа. Чем «светосильнее» телескоп, т.е. чем больше светосила его объектива, тем более яркие изображения он дает. Количество же света, собираемого телескопом, зависит лишь от диаметра его объектива (но не от светосилы!). Из-за явления, именуемого в оптике дифракцией, при наблюдениях в телескопы яркие звезды кажутся небольшими дисками, окруженными несколькими концентрическими радужными кольцами. Разумеется, к настоящим дискам звезд дифракционные круги никакого отношения не имеют.
Создание рефракторов.
При создании нового рефрактора два обстоятельства определяют успех: высокое качество оптического секла и искусство его шлифовки. По почину Галилея многие из астрономов сами занимались изготовлением линз. В одном лице тогда должны были сочетаться таланты оптика, механика и астронома. Из оптиков того времени следует вспомнить, прежде всего, Пьера Гинана, швейцарского рабочего, начавшего в XVIII веке свою карьеру оптика с изготовления очков и примитивных рефракторов с картонными тубусами. Однажды ему удалось увидеть английский «доллонд», и Гинан решил сам научиться изготовлять такие рефракторы. В течение семи лет он пробовал самостоятельно отливать оптические стекла, однако поначалу успеха не имел. Но Гинан был человеком очень настойчивым, и неудачи только подстрекали его к новым опытам. Он построил новую большую плавильную печь, в которой можно было плавить до 80 кг стекла. На это ушли почти все его средства, и много лет его семье пришлось жить впроголодь. В конце концов, упорство было вознаграждено. В 1799 году Гинану удалось отлить несколько отличных дисков поперечником от 10 до 15 см – успех по тем временам неслыханный. В 1814 г. Гинан изобрел остроумный способ для уничтожения струйчатого строения в стеклянных болванках: отлитые заготовки распиливались и, после удаления брака, снова спаивались. Тем самым, открывая путь к созданию крупных объективов. Наконец Гинану удалось отлить диск диаметром 18 дюймов(45 см.), который в 1823 году французский оптик Кошуа отшлифовал для Дублинской обсерватории. Это был последний успех Пьера Гинана. Над дальнейшей разработкой рефракторов работал знаменитый американский оптик Альван Кларк. Объективы изготовлялись в американском Кембридже, причем испытание их оптических качеств производилось на искусственной звезде в тоннеле длиной 70м. Уже к 1853 году Альван Кларк достиг значительных успехов: в изготовленные им рефракторы удалось наблюдать ряд неизвестных ранее двойных звезд.
В 1862 году на Дирборнской обсерватории в штате Миссисипи был установлен 18-дюймовый рефрактор Кларка. Впервые его оптические качества проявились в полной мере, когда сын Кларка Джордж обнаружил у Сириуса слабенькую звёздочку – спутник, как оказалось впоследствии, первый белый карлик. Одиннадцать лет спустя, на Морской обсерватории начал действовать еще более крупный инструмент – 25-дюймовый рефрактор фирмы «Альван Кларк и сыновья». С помощью этого инструмента Асаф Холл в 1877 году открыл два спутника Марса: Фобос и Деймос. В том же памятном году весь мир облетело сообщение Джовани Скиапарелли об открытии на поверхности Марса загадочных «каналов». Разговоры о марсианской цивилизации увлекали многих и в 1894-м году в штате Аризона Персиваль Ловелл, бывший дипломат, построил на свои средства крупную обсерваторию, главной задачей которой было решение проблемы об обитаемости Марса. В 1896 году на этой обсерватории появился очередной великолепный рефрактор Кларка с поперечником объектива в 24 дюйма.
Но еще раньше, в 1885 году Альван Кларк побил сови прежние достижения. В 1878 году Пулковская обсерватория обратилась к фирме Кларка с заказом на изготовление 30-дюймового рефрактора, самого крупного в мире. На изготовление этого телескопа российское правительство ассигновало 300000 рублей. Заказ был выполнен за полтора года, причем объектив изготовил сам Альван Кларк из стекол парижской фирмы Фейль, а механическая часть телескопа была сделана немецкой фирмой Репсальд.
Новый Пулковский рефрактор оказался превосходным, одним из лучших рефракторов мира. Но уже в 1888 году на горе Гамильтон в Калифорнии начала свою работу Ликская обсерватория, оснащенная 36-дюймовым рефрактором Альвана Кларка. Отличные атмосферные условия сочетались здесь с превосходными качествами инструмента.
Рефракторы Кларка сыграли огромную роль в астрономии. Они обогатили планетарную и звездную астрономию открытиями первостепенного значения. Успешная работа на этих телескопах продолжается и поныне.
Создание рефлекторов.
Идея создания зеркального телескопа, или рефлектора была высказана при жизни Галилея Н. Цукки (1616 г.) и М. Мерсеном (1638 г.). Однако они, как позже Д. Грегори(1663 г.) и Г. Кассегрен (1672 г.) предложили лишь теоретические схемы этих телескопов, но ни один образец изготовлен не был. В 1664 году Роберт Гук изготовил рефлектор по схеме Грегори, но качество телескопа оставляло желать лучшего. Лишь в 1668 году Исаак Ньютон, наконец, построил первый действующий рефлектор. Этот крошечный телескоп по размерам уступал даже галилеевским трубам. Главное вогнутое сферическое зеркало из полированной зеркальной бронзы имело в поперечнике всего 2.5 см., а его фокусное расстояние составляло 6.5 см. Лучи от главного зеркала (рис. 3а) отражались небольшим плоским зеркалом в боковой окуляр, представлявший собой плоско-выпуклую линзу. Первоначально рефлектор Ньютона увеличивал в 41 раз, но, поменяв окуляр и, снизив увеличение до 25 раз, ученый нашел, что небесные светила при этом выглядят ярче и наблюдать их удобнее.
В 1671 году Ньютон соорудил второй рефлектор, чуть больше первого (диаметр главного зеркала был равен 3.4 см. при фокусном расстоянии 16 см.). Система Ньютона получилась весьма удобной, и она успешно применяется до сих пор.
Рефлектор по схеме Грегори (рис 3 б) имеет несколько другое устройство. Лучи от главного зеркала падают на небольшое вогнутое эллипсоидальное зеркало, отражающее их в окуляр, который укреплен в центральном отверстии главного зеркала. Эта система имеет некоторые преимущества перед системой Ньютона. Так как эллипсоидальное зеркало находится дальше главного фокуса телескопа, изображения в рефлекторе Грегори прямые (как в театральном бинокле). При рассматривании земных предметов это удобно, а при наблюдении небесных тел – безразлично. Так как эллипсоидальное зеркало как бы удлиняет фокусное расстояние телескопа, в рефлекторах Грегори при прочих равных условиях можно применять большие увеличения, чем в рефлекторах Ньютона. Кроме того, наблюдатель смотрит на небесный объект прямо, что при наведении на светило представляет некоторое неудобство.
Если вогнутое эллипсоидальное зеркало заменить выпуклым гиперболическим, получаем систему Кассенгрена (рис. 3в). Так как гиперболическое зеркало встречает лучи, отраженные главным зеркалом до фокуса, кассенгреновские рефлекторы короткие, практичные, что удобно для некоторых астрофизических наблюдений.
Главное преимущество рефлекторов – отсутствие у зеркал хроматической аберрации. Если же главному зеркалу придать форму параболоида вращения, то можно теоретически свести к нулю сферическую аберрацию (во всяком случае, для лучей, падающих на главное зеркало параллельно его оптической оси). Изготовление зеркал – дело более легкое, чем шлифовка огромных линзовых объективов, и это также предрешило успех рефлекторов. Из-за отсутствия хроматических аберраций рефлекторы можно делать очень светосильными (до 1:3), что совершенно немыслимо для рефракторов. При изготовлении рефлекторы обходятся гораздо дешевле, чем равные по диаметру рефракторы.