Механико - технологические решения проблемы механизации садо-водства и виноградарства

Страница 6

Из табл. 5 следует, что кажущийся «каркас» возможен до июля. С июля по октябрь он будет уже истинным и имеющим наибольшую несущую способность. Эта способность приобретается почвой за счёт воздействия на неё двух факторов: природного, вызванного диффузией влаги в системе «почва - атмосфера - почва» (внутренний деформатор) и антропогенного, вызванного воздействием средств ухода (внешний деформатор). Из - за различной интенсивности испарения влаги из почвы влияние природного деформатора переменно, в то время как антропогенный деформатор, состоящий из одного и того же энергетического средства, воздействует на пласт одной и той же массой. То есть приобретение почвой несущей способности в междурядьях многолетних насаждений не стационарно из - за природного фактора - влажности.

К концу лета влажность почвы в пахотном горизонте всего междурядья уменьшается в 1,5 . 2 раза [69]. К этому времени явно проявляется особенность «всплытия» твёрдости почвы, в результате чего до глубины 0,1 . 0,15 м пахотный горизонт превращается в монолит, обладающий максимальной несущей способностью, но, в силу усадо-чных явлений, он разрывается на крупные отдельности, образуя трещины глубиной до 1 м. и более. При этом почва в горизонте 0 .0,1 м. на 10 . 15 % влажнее горизонта 0,1 . 0,2 м. и на 20 .25 %, чем в горизонте 0,2 . 0,3 м. То есть, несмотря на вертикальные трещины, в монолитах сохраняется «подошва», образованная проходами стрельчатых лап, которая способствует зависанию осадков и капиллярному подтягиванию влаги нижних слоёв. Наличие «подошвы» в монолитах доказано графическим отображением информации табл. 5 (рис. 4).

Рис. 4. Динамика коэффициента утяжеления почвы за

вегетацию в ряду (), в колее ()

и междурядьи ()

Из рис. 4 следует, что в междурядье процесс утяжеления почвы продолжается до октября (отрезок ) за счёт отдачи влаги в атмосферу через капилляры «подошвы».

Нами установлено, что абсолютная величина твёрдости почвы в междурядьях многолетних культур Северного Кавказа по годам варьирует в сильной степени, но её относительные показатели между полосами (в ряду, колее и вне колеи междурядья) более или менее стабильны, поэтому они могут быть определены отношением средней твёрдости почвы пахотного горизонта в различное время вегетации и в различных полосах междурядья к величине твёрдости почвы начала вегетации в ряду [69].

Так как структурные схемы посадок садов и виноградников по параметрам междурядий и рядов аналогичны, а принципы уходных работ идентичны (табл. 1), то приведённое состояние обрабатываемого слоя почвы является общим для всех многолетних насаждений Северного Кавказа. В связи со стремлением в архитектонике насаждений к уменьшению ширины междурядий, то полосный структурный характер утяжеления почвы в междурядьях может быть отображён изолиниями твёрдости, части которых изменяются по законам тригонометрических функций [23].

,

где и ;

- максимальная амплитуда изолиний в первом и третьем полупериодах, м;

- период изолинии, равный ширине колеи трактора, м;

- ширина междурядья, м.

Установлено [16, 23, 25, 28, 69, 82, 92, 99], что среда порождает ограничения почвенным параметрам многолетних насаждений природными температурными факторами климата. Влажность и перемещение воздушных масс являются при этом усиливающими факторами течения его годичного цикла. Для равнинной части Кубани в усреднённом виде за последний столетний период эти факторы отображены на циклограмме (рис. 5)

Рис.5. Природное течение годичного цикла температур

воздуха равнинной части Кубани:

1 - годичный ход средних температур;

2 - нижнее отклонение средних температур;

3 - максимумы температурного возмущения климата;

4 - смена прямого природного течения годичного цикла температур на обратный.

Важным в установлении (рис. 5) является то, что начало осенних () и конец весенних () заморозков делят климат центральной части на две равные угловые апертуры. Максимумы температурных возмущений климата района летом и зимой принадлежат одному и тому же вектору циклограммы , проходящему через конец второй декады июля () и января (). В летнюю пору максимум связан с интенсивным трещинообразованием в почве, а в зимнюю - во время смены природного течения температуры (кривая 3) на обратный (кривая 4) - связан с оживлением компонентов системы не ко времени, в результате чего растения попадают в неблагоприятные условия среды не потому, что они в корне изменились, а потому, что потеплением спровоцирован параметр устойчивости компоненты.

С этими двумя явлениями в механизированных технологиях многолетних насаждений следует считаться: для почвы находить соответствующую технологию ухода, а для насаждений - растения с соответствующей устойчивостью [94] или технологию их защиты от экстремальных условий среды [19, 24, 25, 28, 29, 38, 68, 112]. К остальному течению годичного цикла температур воздуха следует приспосабливать технологию ухода за насаждением. Особенно это относится к угловой апертуре апреля, так как параметры характера его погоды чем севернее, тем устойчивее [23].

3. Разработка методологии оптимизации управления

функционированием и развитием механизированных

технологий многолетних насаждений

3.1. Разработка методики подбора критериев оптимизации

Известно из теории «Системы отображения информации» (СОИ, В.Ф.Венда, 1975), что анализ причин события требует достаточного массива информации. По аналогии нами установлено, что процессы, протекающие в технологиях растениеводства, могут быть отображены информацией о культуре, средствах производства, продукте и воздействиях, направленных на поддержание их в заданных параметрах через мнемомодель (рис. 6).

Рис.6. Модель интенсивной технологии продукта

растениеводства

С позиций математической логики функция этой модели может быть вычислима, если моделируемый процесс отождествлён с множеством и полностью определяется своими элементами. Поэтому в разработке методики задача сводилась к доказательству того, что технология интенсивного производства плодов и винограда является тоже множеством. Для этого был использован постулат о том, что «нет других множеств, кроме построенных на одном из шагов».

Процедурно набор информации для расчёта технологий многолетних насаждений осуществлялся методом «понятия бесконечного дерева», набрав её из изоморфных копий трёхэлементных деревьев «шаг» за «шагом» (рис. 7).

Рис. 7. Изображение интенсивных технологий многолетних

насаждений «понятием бесконечного дерева».

Изображение (рис. 7) означает упорядоченное усреднённое множество, названное «полным бинарным деревом»