Гидроклиматические условия на космо-снимках
Гидроклиматические условия на космо-снимках
ВВЕДЕНИЕ
Правильное картографическое изображение гидрографической сети — рек, озер и водохранилищ имеет большое научное и практическое значение. Водные объекты являются существенными элементами содержания большинства географических карт и во многом определяют их «лицо». Прежде всего это относится к топографической карте — главной карте государства.
Вода — природный ресурс, без которого невозможна жизнь человека на земле. Водные объекты, показанные на карте, служат надежным ориентиром для экипажа воздушного судна, геолога, жителя малонаселенного района. Знание пространственного размещения, качественных и количественных характеристик гидрографической сети необходимо при проектировании, строительстве и эксплуатации социально-промышленных. объектов, организации мониторинга природной среды, проведении специальных полевых, производственных и научных изысканий. Наконец, речная и озерная сеть являются своеобразным «каркасом» при составлении многих тематических карт. Она выступает здесь как важный элемент топографической основы.
Характер гидрографической сети в различных природных зонах и высотных поясах Сибири неодинаков. Различия геологии и рельефа, климата и растительности и других компонентов географической среды региона обусловливают своеобразный гидрологический режим водных объектов. Реки горных районов обычно полноводны, поэтому даже небольшие из;
них труднодоступны для переправы или передвижения на лодке. Реки равнин весной разливаются на десятки километров, но после спада весеннего половодья характеризуются малой водностью и спокойным течением. Своеобразен гидрологический режим рек, зарегулированных крупными водохранилищами.
Многие особенности характера и гидрологического режима водных объектов находят непосредственное отображение на топографических картах. К таким показателям относятся:. конфигурация рек, озер и водохранилищ, отметки уреза воды,. ширина, глубина и скорость течения рек, ряд других количественных и качественных характеристик. Чем полнее показана гидрографическая сеть на карте, тем выше ее качество. При этом важно, чтобы карта отражала основные, типичные черты режима рек и других водных объектов. Это повышает ее географическую достоверность. Для обогащения содержания карт необходимо также отображение на них различных динамических состояний гидрографической сети, например, разливов рек, плановых перемещений русел, изменения во времени конфигурации озер и водохранилищ.
Основной источник гидрологической информации при картографировании территории - аэрокосмические снимки. Поэтому знание дешифровочных признаков вод имеет решающее значение при создании карт.
Методические вопросы использования дистанционной информации
Основной целью дистанционных методов является получение информации о местности по снимку. Разработке теории и практики дешифрирования аэрокосмических снимков посвящена обширная литература.
С методической точки зрения дешифрирование снимка сводится к установлению адекватности исследуемого изображения одному из эталонов, внутреннее содержание которого известно. Морфологию ландшафта в принципе можно раскрыть на эталоне с любой детальностью. Но в связи со сложной структурой природного ландшафта, зависящей от множества физико-географических факторов [9], строгий аналог данному эталону не всегда находят даже в пределах ограниченной территории — фации, урочища или местности. Поэтому на эталоне должны быть зафиксированы основные, характерные для данного объекта (процесса, явления) показатели конструкции фотоизображения.
В практике устанавливаются дешифровочные признаки тех объектов, процессов и явлений и с той глубиной проработки взаимосвязей, которые интересуют исследователя и могут быть получены по имеющейся дистанционной информации с учетом вида съемки, масштаба снимка, времени съемки и других условий. Таким образом, идеология анализа снимка заключается в расшифровке генерализованного фотографического изображения местности по данным натурных исследований (от объекта к эталону) и использовании полученной информации в обратном порядке (от эталона к объекту). Иными словами, «космическая» система изучения природных ресурсов, является системой наземно-дистанционной. Она состоит из комплекса научно-технических мероприятий, включающего непосредственные природоведческие (например, контактные) и дистанционные (например, фотографические) исследования. На необходимость комплексирования наземных, авиационных и космических методов указывают многие ученые.
При изучении природных ресурсов и динамики природной среды, а также при постановке мониторинга на базе дистанционных фотоснимков следует учитывать, что детальность анализа зависит от метода исследования, поскольку в качестве лимитирующего условия выступает уровень генерализации фактического материала. Таким образом, при трехуровенных наблюдениях (наземных, с самолета и из космоса) реализуется возможность изучения геосистем любых размерностей. При этом осуществляется поэтапная генерализация частных природных связей и выход на более высокий уровень обобщения.
Важным постоянством современных дистанционных методов является наличие непрерывного потока аэрокосмической информации, что создает базу для мониторинга природной среды как в региональном, так и в глобальном масштабах. Вся территория СССР покрыта несколькими разновременными «слоями» аэрофотосъемки и многократно—космической съемкой. Объем дистанционной информации продолжает нарастать. Имеются топографические и большое число тематических карт, накоплен огромный банк природоведческих данных, полученных традиционными наземными методами. Системный подход к анализу этих материалов на основе дистанционных методов открывает принципиально новые горизонты для решения проблем рационального природопользования.
С точки зрения топографического и тематического картографирования космический снимок (не заменяя самолетный) начинает все более и более играть роль корректирующего (в топографии) и связующего (в тематической картографии) материала. Можно утверждать, что в деле познания природы мы не находимся на «голом месте». Как и в любой области знаний, в природоведении движение вперед возможно, если имеется новый шаг, сделанный за старым. Сейчас едва ли кто серьезно будет говорить о создании, например, гидрографической или ландшафтной карты только по результатам интерпретации космических снимков без привлечения имеющихся картографических, натурных или иных данных. В то же время можно с уверенностью утверждать, что последние материалы могут получить новую «космическую» трактовку, базирующуюся на анализе многоотраслевого содержания снимка. Таким примером служат серии тематических карт, разработанные по программе КИКПР (комплексного изучения и картографирования природных ресурсов на основе космической информации) на ряд регионов страны.
Водная поверхность при пассивном способе дистанционной съемки почти полностью поглощает световой поток, поэтому на фотоизображении, полученном на панхроматическом материале в видимой зоне спектра (0,4—0,8 мкм), она бывает в целом темная и ровная. Однако величина возвращаемого падающего на воду потока энергии, т. е. отражающая способ-кость водной поверхности, зависит от многих факторов: угла 'наклона солнечных лучей, глубины водного объекта, характера грунта и водной растительности, твердого стока (речной мути) и др. Поэтому на черно-белых снимках тональность фотоизображения меняется, варьируя в очень широких пределах. Более плотный тон изображения (до черного) имеет глубокая и чистая вода, более светлый (до белого)-мелкая и загрязненная. На цветных снимках, в том числе спектрозональных, эти различия цветовые. В большинстве случаев указанные тоновые и цветовые вариации водной поверхности на снимке локальны и сравнительно легко распознаваемы, так как структура любой «неводной» поверхности характеризуется значительно более мозаичным рисунком фотоизображения.
Поверхностная гидрографическая сеть (реки, озера, водохранилища) имеет специфическую линейную и площадную конструкцию. Поэтому при дешифрировании водных объектов используются в основном геометрические, а не спектральные или текстурные признаки. В то же время в определенных диапазонах электромагнитных волн реален анализ вариации оптических плотностей, вызываемых растворами и взвесями органических и неорганических веществ, а также зависящих от толщины слоя чистой воды. Это позволяет устанавливать степень загрязнения и глубину вод.