Жидкостные ракетные двигатели (ЖРД)

Страница 4

На четвертой окружности

Общее число форсунок с центральной составит

n = n1 + n2 + n3 = 1+6 + 12 + 18 +24 = 61.

Шаг между форсунками по мере удаления от центра чуть-чуть возрастает.

Создание пристеночного слоя в камере.

Для обеспечения надежного охлаждения горячих стенок камеры необходимо создать вблизи стенок слой продуктов сгорания с пониженной температурой. Это достигается постановкой дополнительный струйных форсунок горючего по периферии головки. При этом в пристеночном слое создается местное соотношение компонентов меньше, чем расчетное в ядре.

Необходимо обеспечить пристеночный слой наименьшим количеством топлива, чтобы доля удельного импульса в пристеночном слое, как неоптимального, была минимальной в общем удельном импульсе камеры.

Для более равномерного распределения компонентов в пристеночном слое необходимо ставить увеличенное число форсунок. При этом пристеночный слой получается устойчивым по длине камеры и сохраняется газовая завеса с пониженной температурой по всей длине камеры.

Однокомпонентная центробежная форсунка предназначена для охлаждения паяного шва и его расход от основного горючего составит 20%. (2,8 кг/сек) Количество форсунок - 30. Плотность НДМГ= 786 .

1. Выбираем угол распыла для форсунки горючего 2α = 40˚.

2. Перепад давления на форсунке Г: ΔРф.гор.= 800000 Па

3. По графику (рис.5.6., [4]) находим Аг = 1; μф.г.=0,44; φг = 0,66.

4. Определяем площадь сопла форсунки горючего

;

dcф.г.=2,76 мм rc=1,38 мм

5)Примем число входных отверстий i=4 .

Rвх/ rc= 2,5; следовательно R вх= 2,5rc =3,45 мм

Находим

6) Определяем число Рейнольдса Reвх и выбираем коэффициент трения

550186,9

-1,72

0,0192

7) Определяем эквивалентную геометрическую характеристику.

Аэ1=0,986

Геометрическая характеристика с учетом вязкости отличается от расчетной идеальной менее чем на 5%, то найденные размеры форсунки принимаем действительными.

Окончательные размеры однокомпонентной центробежной форсунки горючего для пристеночного слоя:

Размеры

Мм

R k

3,84

h форсун

8,00

r c

1,28

r нар сопл

3,33

δ стенки

1,20

r вх

1,51

d вх

3,02

R вх

2,56

Расчет двухкомпонентной форсунки.

Рассчитаем сначала форсунку окислителя, находящуюся внутри форсунки окислителя.

1. Выбираем угол распыла для форсунки горючего 2α = 100˚.

2. Перепад давления на форсунке Г: ΔРф.гор.= 1500000 Па

3. По графику (рис.5.6., [4]) находим Аг = 4; μф.г.=0,19; φг = 0,38.

4. Определяем площадь сопла форсунки окислителя

;

dcф.ок.=6,98 мм rcг=3,49 мм.

Принимая толщину стенки 0,95мм, получаем наружный радиус сопла rнг=4,44 мм

5)Примем число входных отверстий i=4 .

Rвх/ rc= 2,25; следовательно R вх= 2,25rc =7,85 мм

Находим

) Определяем число Рейнольдса Reвх и выбираем коэффициент трения

992161,9

-1,75

0,018

7) Определяем эквивалентную геометрическую характеристику.

Аэ1=3,83

Геометрическая характеристика с учетом вязкости отличается от расчетной идеальной менее чем на 5%, то найденные размеры форсунки принимаем действительными.

Размеры

мм

R k

10,41

h форсун

8,72

r c

4,36

r нар сопл

5,31

δ стенки

0,95

r вх

1,68

d вх

3,37

R вх

8,72

Теперь рассчитаем форсунку Горючего.

1. Выбираем угол распыла для форсунки горючего 2α = 115˚.

2. Перепад давления на форсунке Г: ΔРф.гор.= 800000 Па

3. По графику (рис.5.6., [4]) находим Аг = 6; μф.г.=0,13; φг = 0,3.

4. Определяем площадь сопла форсунки Окислителя

;

5. Проверяем условие rвг > rнок:

мм

Т.к. 4,76>4,44 , то форсунка окислителя будет работать с расчетным коэффициентом расхода.

6. Примем число входных отверстий i=4 .