Жидкостные ракетные двигатели (ЖРД)
Страница 7
10. ПНЕВМОГИДРАВЛИЧЕСКАЯ СХЕМА ДВИГАТЕЛЯ.
Перед заправкой баков ракеты компонентами топлива электропневмоклапаны 5, 6, 8 и 14 находятся в обесточенном состоянии, клапаны горючего 17 и окислителя 7 открыты на предварительную ступень.
При подаче в управляющую полость клапана 7 воздуха давлением 50±2 атм с предыдущей ступени ракеты клапан окислителя закрывается. Производится заполнение шаробаллона 13 газообразным азотом давлением 200 ±5 атм от наземной установки через обратный клапан 12.
При заправке баков ракеты компонентами топлива жидкий кислород заполняет насос до клапана окислителя 7; горючее, заполнив магистрали двигателя, через клапан 29 перепускается в бак ракеты.
Перед запуском двигателя включается продувка форсуночной головки по линии горючего и пояса дополнительного охлаждения камере сгорания. Продувка осуществляется газообразным азотом, подаваемым с предыдущей ступени ракеты через обратные клапаны 3 и 34. В процессе продувки в камере сгорания лепестковой диафрагмой пирозажигательного устройства 2, установленного в критическом сечении, поддерживается определенное давление, обеспечивающее надежное воспламенение пиропатронов.
Запуск двигателя в полете производится автоматически от системы управления при работающем двигателе предыдущей ступени ракеты. По команде на запуск двигателя подается напряжение на пиропатроны пирозажигательного устройства. Одновременно подается напряжение на пироклапан запуска 14, и азот из шаробаллона через редуктор давления поступает в управляющую систему двигателя.
Через 0,8 сек после воспламенения пиропатронов подается напряжение на электропневмоклапаны 5 и 6; воздух стравливается из управляющей полости клапана окислителя 7, клапан открывается на предварительную ступень и удерживается в этом положении разрывным болтом; отсечной клапан горючего 32 открывается при поступлении азота в управляющую полости. Одновременно с командой на открытие топливных клапанов (мембраны принудительного прорыва 4 и 42) прекращает продувка камеры сгорания с предыдущей ступени ракеты. Компоненты топлива поступают в камеру сгорания и воспламеняются. Двигатель выходит на режим предварительной ступени.
Через 0,95 сек после команды на запуск двигателя воспламеняется пороховая шашка газогенератора. Пороховая шашка при своем сгорании обеспечивает раскрутку турбины 22, а также создает необходимый тепловой импульс для начала процесса термического разложения НДМГ в газогенераторе 25. В конце горения пороховой шашки подаете напряжение на электропневмоклапан 8, управляющий клапаном 29. При открытии клапана 29 горючее подходит к обратному клапану 24, одновременно прекращается перепуск горючего в бак ракеты.
При снижении давления пороховых газов горючее, открывая обратный клапан 24, поступает в газогенератор и разлагается, обороты турбонасосного агрегата увеличиваются. С увеличением давления компонентов топлива за насосами клапаны горючего 17 и окислителя 7 открываются на главную ступень (клапан окислителя резко открывается после разрушения разрывного болта). При повышении давления газов в камере сгорания происходит выброс пирозажигательного устройства.
При работе двигателя на режиме главной ступени жидкий кислород через обратный клапан 15 поступает в испаритель 23, где испаряется засчет тепла отработанных газов турбины и идет на наддув бака окислителя. Наддув бака горючего осуществляется продуктами разложения НДМГ, которые отбираются после газогенератора и балластируются жидким горючим в смесителе 20.
Для управления полетом ракеты отработанный газ после турбины и испарителя по трубопроводам подается в рулевые сопла 26, 37 и 40. Необходимый для управления полетом момент сил создается перераспределением расходов газа через неподвижно закрепленные рулевые сопла при помощи заслонок газораспределителей 27, 35 и 38.
При выключении двигателя срабатывает пироклапан окислителя 31, одновременно снимается напряжение с электропневмоклапанов 5, 6, 8, 14 и все пневмоклапаны, за исключением клапана окислителя 7, закрываются. Одновременно открывается перепуск горючего в бак ракеты. Двигатель выключается.
11. Описание конструкции двигателя по разрезу, представленному в графической части.
Камера сгорания (КС) выполнена в виде паяно- сварной неразъемной конструкции и состоит из форсуночной головки 1 и нижней части, включающие среднюю часть 2 и две секции сопла.
Форсуночная головка состоит из 37 центробежных двухкомпонентных форсунок и 24 центробежных однокомпонентных жидкостных форсунок горючего для охлаждения паяного шва и огневого днища. Расположение форсунок концентрическое с переменным шагом: а=28 мм для двухкомпонентных, и а=20 мм для однокомпонентных. Применение двухкомпонентных форсунок обеспечивает смешение компонентов в одной фазе вблизи плоскости форсунок в КС, что приводит к более интенсивному протеканию процессов горения и уменьшению объема КС.
Скрепление наружного днища с внутренним и средним выполнено с помощью форсунок штырей. Проточная часть форсунок штырей не отличается от основных форсунок.
Стык между форсуночной головкой и нижней частью образован сваркой по огневой стенке, а также по опорному и биметаллическому кольцам .
В связи с тем что при силовых нагрузках титановые сплавы могут самопроизвольно возгораться в среде жидкого кислорода, все детали полости окислителя форсуночной головки выполнены из стали или бронзы. Для стыковки стального корпуса головки с рубашкой средней части, выполненной из титанового сплава, предусмотрено биметаллическое кольцо. Кольцо состоит из внутренней стальной и наружной титановой частей, спаянных между собой твердым медно-серебряным припоем по специальной резьбе, имеющей круглый профиль, а также по круговым торцовым шипам. Так как паяное соединение биметаллического кольца недостаточно пластично то осевые и радиальные нагрузки, возникающие при работе камеры, воспринимаются резьбой и круговыми шипами, припой же-предназначен только для герметизации соединения.
В районе стыка форсуночной головки с нижней частью расположено шесть гнезд под клапаны отсечки горючего и три опорных выступа для крепления камеры сгорания к ракете. На опорном кольце установлены кронштейн под вибродатчик, штуцер отбора горючего на питание газогенератора.
На камере сгорания предусмотрены замеры давления перед форсунками окислителя и горючего, давления газов в камере, температуры горючего перед форсунками; штуцер замера давления газа выполнен биметаллическим (медно-стальным).
Средняя часть камеры сгорания, включающая цилиндрический участок, область втекания и начальный участок закритической части сопла, состоит из наружных рубашек с силовыми кольцами внутренних оребренных стенок, гофрированной проставки.
Соединение рубашек и колец с внутренними стенками осуществляется путем пайки твердым медно-серебряным припоем по вершинам ребер и кольцевым буртам стенок, а также по гофрированной проставке. Со стороны стыка с первой секцией сопла стенка средней части припаяна к титановому кольцу, являющемуся продолжением рубашки и имеющему отверстия для протока горючего. Принятое конструктивное оформление стыкового торца позволило получить простой и надежный переход к цельнотитановой первой секции сопла и разгрузить паяное соединение первой секции сопла в районе стыка со средней частью.
Сварной стык бронзовых стенок средней части удален от критического сечения в направлении к срезу и поддерживается гофрированной проставкой.
Первая секция сопла состоит из наружной рубашки, соединенной с внутренней стенкой диффузионной пайкой по вершинам двух гофрированных проставок. К торцам рубашки и стенки приварены кольца, улучшающие условия сварки со средней частью и второй секцией сопла. Рубашка и стенка второй секции сопла соединены между собой диффузионной пайкой по вершинам гофрированной проставки , а также по кольцам установленным на торцах узла. Для обеспечения требуемого расхода охлаждающей жидкости в направлении к срезу сопла со стороны кольца в наружные зиги гофрированной проставки (попарно через один зиг) установлены заглушки , запирающие проток части горючего в сторону к критическому сечению.