Исследование движения центра масс межпланетных космических аппаратов

Страница 3

Кинематические параметры в геоцентрической экваториальной системе координат:

t, сек

4946.5

X, м

6137262,9

Y, м

3171846,1

Z, м

689506,95

Vx, м/с

-201,3

Vy, м/с

-1247,03

Vz, м/с

7472,65

l, °

28,1

Точность выведения:

- предельная ошибка по координате (3s) - 7 км.

- предельная ошибка по скорости (3s) - 5 м/с.

Пересчитав ошибку по координате на ошибку по периоду выве­дения орбиты получим предельную ошибку по периоду DT - 10 сек.

Корреляционная матрица ошибок выведения на момент выведе­ния составляет:

Члены, стоящие на главной диагонали представляют собой квад­раты предельных ошибок - (3s)2.

K11 = K22 = K33 = (3s)2 = 72 = 49 км.

K44 = K55 = K66 = (3s)2 = 52 = 25 м/с.

Остальные члены представляют собой вторые смешанные мо­менты Kij = Kji = rijsisj или Kij = Kji = rjj(3si)(3sj), где rjj - коэффици­енты связи величин i и j. В данном случае вторые смешанные мо­менты Kij = Kji = 0.

Кинематические параметры в геоцентрической экваториальной системе координат на момент выведения с учетом ошибок выведе­ния:

t, сек

4946.5

X, м

6144262,9

Y, м

3178846,1

Z, м

696506,95

Vx, м/с

-206,3

Vy, м/с

-1252,03

Vz, м/с

7477,65

l, °

28,1

Параметры орбиты с учетом ошибок выведения:

l, °

28,13

T, c

5795,7

W, °

28,13

p, км

6973,5

а, км

6973,6

e

0,00314

i, °

97,637

2.3.2. ЦЕЛИ РАБОТЫ

1) Исследование и моделирование движения ЦМ МКА при воз­действии на КА возмущающих ускорений.

2) Разработка алгоритмов проведения коррекции траектории МКА, моделирования процесса, и расчет потребного топлива для проведения коррекции траектории.

3) Исследование динамики системы коррекции траектории при стабилизации углового положения в процессе проведения коррек­ции траектории МКА.

2.4. МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ЦЕНТРА МАСС МКА

2.4.1.УРАВНЕНИЕ ДВИЖЕНИЯ КА

Рассмотрим невозмущенное движение материальных точек М и m в некоторой инерциальной системе координат. Движение совер­ша­ется под действием силы притяжения Fz. Сила Fz для материаль­ной точки m определяется формулой:

,

где ¦ - постоянная притяжения,

ro - единичный вектор, направленный от М к m,

,

где - радиус-вектор, проведенный из т.М до т.m.

r - относительное расстояние от М до m.

На точку М действует сила Fz, равная по величине и направлен­ная в противоположную сторону.

На основе второго закона Ньютона уравнения движения матери­альных точек М и m имеют вид:

(1), (2)

или

(3), (4)

где p1 - радиус-вектор, проведенный из начала инерциальной сис­темы координат в точку m.

p2 - радиус-вектор, проведенный из начала инерциальной сис­темы координат в точку М.

.

Вычитая из уравнения (3) уравнение (4), получим уравнение дви­жения мате­риальной точки m относительно притягивающего цен­тра М:

Так как m<<М, следовательно, можно пренебречь ускорением, которое КА с массой m сообщает притягивающему центру М. То­гда можно совместить начало инерциальной системы координат с при­тягивающим центром М. Следовательно, .

Таким образом, уравнение невозмущенного движения КА отно­сительно притягивающего центра М в инерциальной системе коор­динат, центр которой находится в М, имеет вид

,

где m = fM - гравитационная постоянная Земли.

Рассмотрим возмущенное движение КА в геоцентрической эква­ториальной (абсолютной) системе координат OXYZ:

- начало О - в центре масс Земли.

- ось X направлена в точку весеннего равноденствия g.

- ось Z совпадает с осью вращения Земли и направлена на Север­ный полюс Земли.

- ось Y дополняет систему до правой.

Движение КА в абсолютной системе координат OXYZ происхо­дит под действием центральной силы притяжения Земли Fz, а также под действием возмущающих сил Fв. Уравнение движения имеет вид

или

где m = 597 кг - масса КА.

В проекциях на оси абсолютной системы координат OXYZ полу­чим

или

или

или

где axв, ayв, azв - возмущающиеся ускорения.

Основные возмущающиеся ускорения вызываются следующими причинами:

- нецентральностью поля притяжения Земли.

- сопротивлением атмосферы Земли.

- влиянием Солнца.

- влиянием Луны.

- давлением солнечного света.