Эволюция биологических механизмов запасания энергии

Страница 5

Какая бы часть спектра этого излучения ни по­глощалась на Земле, это в конечном счете приводит главным образом к нагреванию поверхности плане­ты и ее атмосферы, или же энергия вновь испуска­ется в космическое пространство. Какова же роль фотосинтеза, фотосинтезирующих организмов в улавливании этой энергии? Почему утверждают, что фотосинтез - это энергетическая основа биоло­гических процессов, энергетический движитель развития биосферы? Почему говорят как о фотоавтотрофии (то есть о питании за счет света) биосфе­ры в целом, так и о фотоавтотрофии человечества, а жизнь на Земле называют космическим явлением прежде всего потому, что она существует и развивает­ся за счет энергии, поступающей к нам из космоса — от ближайшего космического светила?

Как известно, фотосинтез растений заключается в преобразовании и запасании солнечной энергии, в результате которого из простых веществ — угле­кислоты и воды — синтезируются углеводы и выде­ляется молекулярный кислород. В общем виде этот процесс можно описать следующим уравнением (рис. 2).

Несмотря на кажущуюся простоту фотосинтеза, на Земле, пожалуй, нет более удивительного про­цесса, который смог бы в такой степени преобразо­вать нашу планету.

ЗАПАСАНИЕ ЭНЕРГИИ

Как следует из уравнения (рис. 2), на каждый ас­симилированный в процессе фотосинтеза моль уг­лекислоты запасается 114 ккал энергии. В чем же состоит достоинство запасания солнечной энергии растениями по сравнению с неорганизованной ("нефотосинтезирующей") системой? Любое ве­щество, поглощая квант солнечной энергии, пере­ходит в возбужденное состояние, что уже можно рассматривать как преобразование энергии элект­ромагнитного излучения и ее запасание. Однако энергия электронного возбуждения очень быстро (за 10-13 – 10-11 сек) растрачивается на тепло или же вновь излучается в пространство (для сложных ор­ганических молекул типа хлорофилла этот процесс происходит за 10-8 – 10-9 сек) и, следовательно, в ви­де возбужденных состояний энергия света может быть запасена лишь на незначительные доли секун­ды. В результате же фотосинтеза энергия поглощен­ного кванта света (или, лучше сказать, часть этой энергии) запасается надолго: от минут и часов до сотен и даже миллионов лет (как это имело место, например, при образовании горючих ископаемых — нефти, природного газа, каменного угля, торфа в результате разложения наземных и морских расте­ний или животных). Но этим, конечно, не исчерпы­вается специфика фотосинтеза в использовании солнечной энергии. Так, формирование горных ледников и озер тоже происходит за счет энергии Солнца, идущей на испарение воды, и при этом то­же происходит запасание солнечной энергии на длительное время. В связи с этим говорят об еще од­ном преимуществе фотосинтеза: запасание солнеч­ной энергии происходит в очень удобной для биоло­гического использования форме - молекулярной, в виде богатых энергией связей, в основном в сахарах и их производных, а также в аминокислотах, белках, жирах, которые в любой необходимый момент мо­гут быть использованы растениями или "съевши­ми" их нефотосинтезирующими (гетеротрофными) организмами для покрытия своих энергетических потребностей, для биосинтеза собственных высо­комолекулярных соединений.

Рис. 1. Интенсивность падающего на Землю солнечного излучения (Нl) в зависимости от длины волны. Заштрихованные области соответствуют ненаблюдаемым на уровне моря участкам спектра из-за их поглощения указан­ными компонентами атмосферы. 1 - Солнечное излучение за границей атмосферы, 2 - солнечное излучение на уровне моря, 3 - излучение абсолютно черного тела при 5900 К. (Справочник по геофизике и космическому про­странству. Под ред. С.Л. Валлея и Мак Гроу-Хилла, Нью-Йорк, 1965).

Фотосинтез

Рис. 2. Уравнение фотосинтеза кислородвыделяющих фотосинтезирующих организмов.

Масштабы фотосинтетического преобразова­ния и запасания солнечной энергии огромны: каж­дый год за счет фотосинтеза на Земле образуется около 200 млрд. тонн биомассы, что эквивалентно энергии, равной 3 • 1021 Дж или 7,2 • 1020 кал. При этом необходимо иметь в виду, что фотосинтез — единственный биологический процесс, протекаю­щий с запасанием (с увеличением) свободной энер­гии. Все остальные процессы, как в растениях, так и в животных, проходят за счет химической энергии, накапливаемой в фотосинтезирующих организмах в результате преобразования поглощенного солнеч­ного света. Следовательно, практически вся живая материя на Земле представляет собой прямой или отдаленный результат фотосинтетической деятель­ности растений, которые являются посредниками между неиссякаемым источником энергии — Солн­цем и всем живым миром нашей планеты. Именно поэтому мы говорим о фотоавтотрофии биосферы Земли, в том числе и о фотоавтотрофии человече­ства. Население Земли ежегодно потребляет около 1 млрд. тонн продуктов питания, что соответствует 15 • 1018 Дж, если считать численность населения равной 5 млрд. человек. Следовательно, человечест­во потребляет в виде органических веществ лишь около 0,5% всей энергии, запасаемой в результате фотосинтеза. Общее потребление энергии в миро­вом масштабе составляет 3 — 4 • 1020 Дж в год, то есть около 10% всей энергии, запасаемой за год благода­ря фотосинтезу. Разведанные запасы ископаемого топлива (нефти, газа, угля, торфа) по запасенной в них энергии соответствуют продукции фотосинте­тической деятельности на Земле приблизительно за 100 лет, что эквивалентно также энергии, которая содержится во всей биомассе, находящейся в насто­ящее время на нашей планете.

АССИМИЛЯЦИЯ ДВУОКИСИ УГЛЕРОДА

Ежегодная ассимиляция углекислого газа на Земле в результате фотосинтеза составляет около 260 млрд. тонн, что эквивалентно 7,8 • 10'° тонн уг­лерода, и это связывание углерода компенсируется выделением практически такого же количества СО2 в результате дыхания нефотосинтезирующих орга­низмов. Количество СО2, вовлекаемого в цикл "фо­тосинтез—дыхание", составляет около 10% массы углекислого газа в атмосфере, которая в 1980 году была эквивалентна 7,1 • 10" тонн углерода. В то же время до 1860 года атмосфера содержала лишь 6,1 • 10й тонн углерода в виде СО2, и это 15%-ное увеличение СО2 в атмосфере связывают прежде все­го с появлением дополнительного источника СО2 вследствие интенсивного сжигания ископаемого топлива, которое эквивалентно в настоящее время 5 • 109 тонн углерода в год и увеличивается в среднем на 4,3% в год.

Необходимо отметить, что значительно большая часть углерода содержится в виде карбонатов в оса­дочных породах - 5,5 • 1016 тонн, в живых (в основ­ном леса) и отмерших организмах - 3,5 • 1012тонн. В мировом океане содержится в 60 раз больше угле­рода, чем в атмосфере (3,5 • 1013 тонн), что связано с очень высокой растворимостью СО2 в воде и обра­зованием Н2СО3 и, следовательно, можно было бы предположить, что незначительное дополнитель­ное поступление СО2 в результате сжигания иско­паемого топлива, которое составляет менее одного процента в год от содержания углекислого газа в ат­мосфере, не должно приводить к заметному увели­чению содержания СО2 в атмосфере. Однако в дей­ствительности лишь в верхних слоях океана, содержащих лишь 1,5% всего углерода, растворен­ного в воде, обмен углерода с атмосферой осуще­ствляется достаточно быстро (за 6 - 7 лет), тогда как для установления такого равновесия с глубинными слоями океана требуется несколько тысячелетий. Вследствие этого сжигание ископаемого топлива в промышленном масштабе привело к увеличению содержания СО2 в атмосфере с 0,027% (в доиндустриальную эпоху) до 0,034% в настоящее время. Рас­четы показывают, что к 2035 году содержание угле­кислого газа в атмосфере удвоится, то есть будет составлять около 0,06%. Основным последствием этого, как считается, будет глобальное потепление климата, обусловленное так называемым "теплич­ным эффектом", связанным с тем, что углекислый газ "прозрачен" для основной части солнечного света, но задерживает (поглощает) тепловое (ин­фракрасное) излучение от нагретой Солнцем по­верхности Земли. Увеличение концентрации СО2 в атмосфере в два раза может привести к повышению температуры поверхности Земли на 2 — 3°С, причем оно будет минимальным в тропической зоне и мак­симальным в высоких широтах (8 - 11°С). Такое повышение температуры вызовет таяние льдов, особенно в Антарктиде, что может привести к по­вышению уровня моря на 5 м и затоплению значи­тельной части суши. Поэтому возможность гло­бального потепления климата становится сейчас проблемой всего человечества. Согласно Междуна­родной конвенции, принятой в 1992 году, развитые индустриальные страны будут проводить политику ограничения промышленного выброса СО2 в атмо­сферу, а также защиты и увеличения стоков и резер­вуаров СО2, то есть растительности. Обсуждается даже вопрос о том, что страны с повышенным вы­бросом СО2 должны платить компенсацию странам, где потребление С02 превышает его продукцию. В этой связи необходимо отметить, что, согласно оценкам, проведенным российскими учеными, Россию, наряду с северными территориями Канады, но отнести к странам с увеличенным потреблением СО2, что связано главным образом с "отставанием" минерализации органического вещества от фотосинтетической ассимиляции СО2 в условиях переувлажненных почв на фоне невысоких темпе­ратур в северных областях нашей страны. Интерес­но отметить мнение академика А.Л. Яншина о том, что для России, более 50% территории которой рас­положено в зоне вечной мерзлоты, повышение кон­центрации СО2 и связанное с ним потепление кли­мата выгодно. При этом следует также учитывать, что двукратное повышение содержания СО2 в атмо­сфере приведет к 60%-ному повышению скорости фотосинтеза на Земле.