Экологические основы устойчивости растений

Страница 17

Для уравнения баланса между поступлением и расходом воды в растении образовалась сложная система анатомо-физиологических приспособлений. Такие приспособления наблюдаются у ксерофитов, гигрофитов, мезофитов. Большой интерес в связи с этим представля­ют исследования Б. А. Келлера, который изучал анатомо-физиоло-гические особенности у растений резко отличающихся экологических групп, но близких между собой в систематическом отношении. Он исследовал многолетние травянистые растения из семейства Маре­новые (Asperula). Одни из них были типичными степными растения­ми, а другие теневыносливыми, лесными.

Степной вид ясменника колокольчиковидного (Asperula glauca) имеет сизые узкие иглообразные толстые листья с сильно развитой -двуслойной палисадной паренхимой; края листьев немного загнуты вниз. Это типичный ксерофит, растущий, на открытой местности в степной полосе или полупустынях. Второй вид— ясменник душистый (Asperula odorata) — характерен для влажных и очень тенистых участков лиственного леса; у растений этого вида широкая и тонкая пластинка, однослойная палисадная ткань, состоящая из укорочен­ных и рыхло расположенных клеток. У обоих видов Asperula было проведено сравнительное изучение анатомического строения и ин­тенсивности транспирации (табл. 5).

Табл. 5. Анатомическое строение и интенсивность транспирации у степных и лесных видов, %

(по.Н. А. Максимову)

Растение  

Длина сети жилок листа  

Количество устьиц  

Интенсивность трансшфйцин  

Asperula glauca

Asperula odorata  

100

30  

100

14  

100

45  

Такие же исследования провел Б. А. Келлер с двумя видами под­маренника: весенний (Gallium verum) и крестовидный (Gallium cru-ciata). Полученные им данные также свидетельствуют о том, что ус­ловия произрастания оказывают большое влияние на анатомическую структуру и физиологические особенности растения. Если ксерофиты одновременно являются гелиофитами, то мезофиты и даже гигрофиты не обязательно являются теневыносливыми растениями.

При выращивании фасоли (опыт Н. А. Максимова) на различном расстоянии от источника света (электрическая лампа) — было уста­новлено, что у сильнее освещенных экземпляров устьиц на листе было приблизительно в 4 раза больше, чем у плохо освещенных, раз­меры клеток эпидермиса в 3—4 раза меньше и сеть жилок значитель­но гуще. Таким образом, степень освещенности и нагревания сильно влияет на анатомическое строение.

Н. А. Максимов проведенными исследованиями развенчал господ­ствовавшие в физиологии того времени взгляды на засухоустойчи­вость как на биологически обоснованную потребность растения в недостаточном водоснабжении, как на сухолюбие. Его исследования показали, что засухоустойчивость следует понимать как приспосо-бительное свойство растений переносить глубокое завядание с наи­меньшим вредом не только для данного индивидуума, но и для всего вида.

Различие между стойкими и нестойкими против засухи растениями обусловлено характером тех изменений в обмене веществ, которые возникают у растения под влиянием обезвоживания. Так, уровень оводненности ткани пшеницы выше у неустойчивых против засухи сортов по сравнению с устойчивыми. Кроме того, у неустойчивых сортов наблюдается более высокий уровень гидролитического дей­ствия ферментов углеводного и белкового обменов. Однако эти приз­наки непостоянны и проявляются лишь в условиях полного насыще­ния водой, а при нарушении водоснабжения они быстро утрачивают­ся. Результаты исследований показали, что приспособительные свой­ства у засухоустойчивых форм растений возникают под влиянием условий их существования.

КРИТИЧЕСКИЕ ПЕРИОДЫ В ВОДООБМЕНЕ РАЗНЫХ РАСТЕНИЙ.

В онтоге­незе растения неодинаково чувствительны к недостатку воды. Очень чувствительны растения к недостатку воды в периоды наибольшего роста конкретного органа или всего растения. Для каждого вида растений существуют критические периоды, т. е. периоды наибольшей чувствительности к снабжению водой. На I—IV этапах органогенеза злаки относительно устойчивы к засу­хе, хотя урожай снижается в данном случае за счет уменьшения числа заложившихся колосков в колосе.

На V—VIII этапах устойчивость к засухе злаков снижается, урожай падает за счет уменьшения количества колосков и цвет­ков в колосе (метелке). Засухоустойчивость, как и жаростойкость растений, резко снижается с образованием у них генеративных органов и до цветения (VII—IX этапы) включительно. По Ф. Д. Сказкину, злаки наиболее чувствительны к влаге в период фаз выход в трубку — колошение. Следовательно, в критический период формируются генеративные органы, происходят цветение и оплодотворение.

В период генеративного развития растений на ранних этапах развития засуха приводит к стерильности цветков (к черезернице и пустоколосью), а на более поздних (молочная, восковая спелость) — к снижению качества и количества урожая плодов и семян, образованию щуплого зерна, недостаточно заполненного питательными запасными веществами, со слабым зародышем. Важно подчеркнуть, что именно в критические периоды расте­ния наиболее интенсивно растут и формируют хозяйственно по­лезные органы (плоды, семена и др.).

ЗАКЛЮЧЕНИЕ

Одной из главных причин снижения урожайности высокопро­дуктивных сельскохозяйственных растений является их недоста­точная устойчивость к неблагоприятным факторам среды. Поэ­тому чрезвычайно важно знать основные показатели, которые могут характеризовать устойчивость растений к тем или иным неблагоприятным факторам среды. Важность такой постановки вопроса очевидна, так как ведение современного сельского хо­зяйства требует от специалистов знания не только теоретических основ проблемы, но и умения применять различные физиологи­ческие характеристики состояния растений в экстремальных ус­ловиях.

Для определения устойчивости растений к неблагоприятным факторам среды используют разнообразные методы. Это в пер­вую очередь визуальная диагностика состояния растений: высота растения, кустистость, темпы роста, формирование листового аппарата, окраска листьев и т. д. Как правило, такие показатели используют при прямых полевых или вегетационных методах выращивания. Однако трудоемкость и продолжительность пря­мых методов вызвали необходимость разработки лабораторных методов диагностики устойчивости растений. В основе этих ме­тодов лежат изменения физиологических и биохимических про­цессов, происходящих в растениях.

В зависимости от вида действующего фактора можно выде­лить такие показатели, как водоудерживающая способность рас­тений, содержание свободной и связанной воды, эластичность и вязкость протоплазмы. Для определения засухоустойчивости рас­тений применяют метод крахмальной пробы, определение выхо­да электролитов из тканей растений и содержания статолитного крахмала, устойчивость пигментного комплекса, скорость движе­ния цитоплазмы.

При диагностике холодостойкости и морозоустойчивости ис­пользуют содержание углеводов, активность р-фруктонозидазы, степень склерификации узла кущения, изменение электропро­водности тканей, биопотенциалов и увеличение сродства к кра­сителям.

Устойчивость к засолению можно определять по скорости прорастания семян в солевом растворе, а также использовать для этих целей такие показатели, как степень и скорость плазмолиза, «выцветания» хлорофилла, раскрытия устьиц, количество альбу­минов, биохемилюминесценция, и другие показатели.

Применяя различные методы определения устойчивости рас­тений, можно уже на ранних этапах роста и развития растений выявить возможность выращивания их в той или иной экологи­ческой среде.