Экологические основы устойчивости растений

Страница 3

Способы повышения холодостойкости некоторых растений.

Хо­лодостойкость некоторых теплолюбивых растений можно повы­сить закаливанием прорастающих семян и рассады, которое сти­мулирует защитно-приспособительную перестройку метаболизма растений. Наклюнувшиеся семена или рассаду теплолюбивых культур (огурец, томат, дыня и др.) в течение нескольких суток (до месяца) выдерживают при чередующихся (через 12 ч) пере­менных температурах: от 0 до 5 °С и при 15—20 оС. Холодостой­кость ряда растений повышается при замачивании семян в 0,25%-ных растворах микроэлементов.

Повысить холодостойкость растений можно прививкой тепло­любивых растений (арбуз, дыня) на более холодоустойчивые под­вои (тыква). Положительное влияние этих приемов связано со стабилизацией энергетического обмена и упрочением структуры клеточных органоидов у обработанных растений. У закаленных растений увеличение вязкости протоплазмы при пониженных температурах происходит медленнее.

Заморозки. Большой ущерб сельскому хозяйству наносят крат­ковременные или длительные заморозки, отмечаемые в весенний и осенний периоды, а в северных широтах и летом. Заморозки — снижение температуры до небольших отрицательных величин, могут быть во время разных фаз развития конкретных растений. Наиболее опасны летние заморозки, в период наибольшего роста растений. Устойчивость к заморозкам обусловлена видом расте­ния, фазой его развития, физиологическим состоянием, условия­ми минерального питания, увлажненностью, интенсивностью и продолжительностью заморозков, погодными условиями, пред­шествующими заморозкам.

Наиболее устойчивы к заморозкам растения раннего срока посева (яровые хлеба, зернобобовые культуры), способные вы­держивать в ранние фазы онтогенеза кратковременные весенние заморозки до —7 .-10 оС. Растения позднего срока посева раз­виваются медленнее и не всегда успевают подготовиться к низким температурам. Корнеплоды, большинство масличных культур, лен, конопля переносят понижение температуры до —5 .—8 °С, соя, картофель, сорго, кукуруза — до —2 .—3, хло­пок—до -1,5 .-2, бахчевые культуры — до -0,5 .-1,5 оС.

Существенную роль в устойчивости к заморозкам играет фаза развития растений. Особенно опасны заморозки в фазе цвете­ние — начало плодоношения. Яровые хлеба в фазе всходов пере­носят заморозки до -7 .-8 оС, в фазе выхода в трубку до -3, а в фазе цветения — только 1—2 оС. Устойчивость растений зави­сит от образования при заморозках льда в клетках и межклеточ­никах. Если лед не образуется, то вероятность восстановления растением нормального течения функций возрастает. Поэтому первостепенное значение имеет возможность быстрого транспор­та свободной воды из клеток в межклеточники, что определяется

высокой проницаемостью мембран в условиях заморозков. У устойчивых к заморозкам культур при снижении температур в составе липидов клеточных мембран увеличивается содержание ненасыщенных жирных кислот, снижающих температуру фазово­го перехода липидов из жидкокристаллического состояния в гель до уровня О оС. У неустойчивых растений этот переход имеет место при температурах выше О °С. В целях максимального сни­жения повреждения растений заморозками необходимо прово­дить посев их в оптимальные сроки, использовать рассаду овощ­ных и цветочных культур. Защищают от заморозков дымовые завесы и укрытие растений пленкой, дождевание растений перед заморозками или весенний полив. Для вертикального перемеще­ния воздуха около плодовых деревьев используют вентиляторы.

МОРОЗОУСТОЙЧИВОСТЬ РАСТЕНИЙ

Морозоустойчивость — способность растений переносить тем­пературу ниже О °С, низкие отрицательные температуры. Моро­зоустойчивые растения способны предотвращать или уменьшать действие низких отрицательных температур. Морозы в зимний период с температурой ниже —20 °С обычны для значительной части территории России. Воздействию морозов подвергаются однолетние, двулетние и многолетние растения. Растения пере­носят условия зимы в различные периоды онтогенеза. У однолет­них культур зимуют семена (яровые растения), раскустившиеся растения (озимые), у двулетних и многолетних — клубни, корне­плоды, луковицы, корневища, взрослые растения. Способность озимых, многолетних травянистых и древесных плодовых куль­тур перезимовывать обусловливается их достаточно высокой мо­розоустойчивостью. Ткани этих растений могут замерзать, одна­ко растения не погибают. Большой вклад в изучение физиологи­ческих основ морозоустойчивости внесли Н. А. Максимов (1952), Г. А. Самыгин (1974), И. И. Туманов (1979) и другие оте­чественные исследователи.

Замерзание растительных клеток и тканей и происходящие при этом процессы.

Способность растений переносить отрицательные температуры определяется наследственной основой данного вида растений, однако морозоустойчивость одного и того же растения зависит от условий, предшествующих наступлению морозов, вли­яющих на характер льдообразования. Лед может образовываться как в протопласте клетки, так и в межклеточном пространстве. Не всякое образование льда приводит клетки растения к гибели.

Постепенное снижение температуры со скоростью 0,5—1 °С/ч приводит к образованию кристаллов льда прежде всего в меж­клеточниках и первоначально не вызывают гибели клеток. Одна­ко последствия этого процесса могут быть губительными для

клетки. Образование льда в протопласте клетки, как правило, происходит при быстром понижении температуры. Происходит коагуляция белков протоплазмы, кристаллами образовавшегося в цитозоле льда повреждаются клеточные структуры, клетки поги­бают. Убитые морозом растения после оттаивания теряют тургор, из их мясистых тканей вытекает вода.

Условия и причины вымерзания растений.

Образующийся при медленном промерзании в межклеточниках и клеточных стенках лед оттягивает воду из клеток; клеточный сок становится кон­центрированным, изменяется рН среды. Выкристаллизовавший­ся лед действует как сухой воздух, иссушая клетки и сильно изменяя их осмотические свойства. Кроме того, цитоплазма под­вергается сжатию кристаллами льда. Образующиеся кристаллы льда вытесняют воздух из межклеточников, поэтому замерзшие листья становятся прозрачными.

Если льда образуется немного и клетки не были механически повреждены его кристаллами, то при последующем оттаивании такие растения могут сохранить жизнеспособность. Так, в лис­тьях капусты при температуре —5 .—6 оС образуется некоторое количество льда в межклеточниках. Однако при последующем медленном оттаивании межклеточники заполняются водой, ко­торая поглощается клетками, и листья возвращаются в нормаль­ное состояние.

Однако клетки, ткани и растения могут погибнуть от мороза. Основными причинами гибели клеток растений при низких от­рицательных температурах и льдообразовании являются чрезмер­ное обезвоживание клеток или механическое давление, сжатие клеток кристаллами льда, повреждающее тонкие клеточные структуры. Оба эти фактора могут действовать одновременно. Летальность действия мороза определяется несколькими обстоя­тельствами. Последствия воздействия низких отрицательных тем­ператур зависят от оводненности тканей растения. Насыщенные водой ткани легко повреждаются, сухие же семена могут выно­сить глубокие низкие температуры (до —196 °С). Низкое содер­жание воды предохраняет от образования льда в растениях при промораживании. Разные растения, их клетки имеют свой кри­тический предел обезвоживания и сжатия, превышение которо­го, а не только снижение температуры приводит к их гибели.

Гибель клеток, тканей и растений под действием морозов обусловливается необратимыми изменениями, происходящими в протопласте клеток: его коагуляцией, денатурацией коллоидов протопласта, механическим давлением льда, повреждающим по­верхностные структуры цитоплазмы, кристаллами льда, наруша­ющими мембраны и проникающими внутрь клетки. Вредное влияние оказывает повышение концентрации и изменение рН клеточного сока, сопровождающие обезвоживание клеток.