Элементарная биохимия
Страница 4
3. Ферменты, как правило, не смещают положения равновесия реакции, а лишь ускоряют его достижение.
Для ферментов характерны и специфические свойства, отличающие их от химических катализаторов, выражающих их химическую природу.
1. По химическому строению молекулы все ферменты являются белками.
2. Эффективность ферментов выше, чем небиологических катализаторов.
3. Ферменты обладают узкой специфичностью, избирательностью действия на субстраты, т.е. на вещества, превращения, которых они катализируют.
4. Одним из важнейших свойств ферментов является их регулируемость.
При ферментативных реакциях в отличие от неферментативных наблюдаются лишь незначительные побочные процессы, для ферментативных реакций характерен почти 100% выход продуктов.
Согласно классификации, все ферменты разделяются на шесть классов в соответствии с характером катализируемых ими реакций.
1. Оксидоредуктазы. Катализируют окислительно-восстановительные реакции.
2. Трансферазы. Катализируют реакции переноса группировок с одного соединения на другое.
3. Гидролазы. Ускоряют гидролитическое расщепление веществ.
4. Лиазы. Катализируют реакции негидролитического расщепления с образованием двойных связей или реакции присоединения по двойным связям.
5. Изомеразы. Катализируют реакции изомерации соединений.
6. Лигазы (синтетазы). Ускоряют реакции синтеза с использованием энергии макроэргических соединений.
Ферментативные препараты находят широкое применение в различных отраслях промышленности. В хлебопекарном производстве для ускорения гидролиза крахмала и улучшения качества теста используют амилазы. При приготовлении детской пищи с целью облегчения переваривания углеводов и белков исходные продукты обрабатываются амилазой и протеиназами. Специфические протеиназы используют в виноделии, в кожевенной промышленности, при производстве синтетических моющих средств. Ферменты используют как лекарственные средства: пепсин, трипсин, химотрипсин, лидаза, стрептокиназа…
Нуклеиновые кислоты[10]
Нуклеиновые кислоты – это сложные соединения, состоящие из пуринового или пиримидинового азотистого основания, моносахарида пентозы (рибозы или дезоксирибозы) и фосфорной кислоты.
Нуклеиновые кислоты – важнейший компонент всех живых организмов, всех живых клеток. С участием нуклеиновых кислот происходит образование белков. Каждый живой организм содержит свои специфические белки, которыми он отличается то других организмов. Информация, определяющая особенности структуры белков, «записана» в ДНК и передается в ряду поколений молекулами ДНК. Все нуклеиновые кислоты делятся на два типа в зависимости от того, какой моносахарид входит в их состав; рибонуклеиновая кислота (РНК) содержит рибозу, дезоксирибонуклеиновая кислота (ДНК) содержит дезоксирибозу.
Пуриновые и пиримидиновые азотистые основания, входящие в состав нуклеиновых кислот, являются производными ароматических, гетероциклических соединений – пурина и пиримидина. Среди пуриновых азотистых оснований главную роль играют аденин (А) и гуанин (Г), а среди пиримидиновых оснований – цитозин (Ц), урацил (У), тимин (Т). В состав ДНК входят аденин, цитозин, гуанин, тимин; в РНК вместо тимина присутствует урацил.
ДНК подобно белкам имеет первичную, вторичную и третичную структуру. Хромосомы животных, бактерий, вирусов содержат по одной непрерывной ДНК-спирали огромной длины по сравнению с размерами ядра. Более 99% ДНК клетки находится в ее ядре и около 1% в цитоплазме. Наследственная информация передается с помощью уникальной последовательности участков ядерной ДНК.
Содержащиеся в клетке РНК различаются размером, составом, функциями и локализацией. В цитоплазме содержится РНК нескольких видов: транспортная РНК (тРНК), информационная РНК (иРНК), рибосомная РНК (рРНК). В ядре локализована ядерная РНК (яРНК), количество которой составляет от 4 до 10% от суммарной клеточной РНК.
Синтез РНК, ДНК и белка очень сложные, взаимосвязанные процессы, которыми вплотную занимается такая наука, как генная инженерия. Основная задача генной инженерии – получение молекул ДНК in vitro, их размножение и введение в организм с целью получения новых наследственных свойств.
Углеводы[11]
Углеводами называют альдегиды и кетоны многоатомных спиртов и полимеры этих соединений. В биосфере углеводов больше, чем всех других органических соединений вместе взятых. В растительном мире на их долю приходится 80-90% из расчета на сухое вещество. В животном организме углеводов содержится около 2% массы тела, но значение их одинаково велико для всех живых организмов, о чем свидетельствуют те важные функции, которые они выполняют.
1. Энергетическая. Окисляясь в процессе дыхания, углеводы выделяют заключенную в них энергию и обеспечивают значительную часть потребности организма в ней. При окислении 1г углеводов выделяется 16,9 кДж энергии.
2. Пластическая. Углеводы используются для синтеза многих важных для организма веществ: нуклеиновых кислот, органических кислот, а из них – аминокислот и далее белков, липидов и т. д.
3. Защитная. Углеводы – основные компоненты оболочек растительных тканей, они участвуют в построении наружного скелета насекомых и ракообразных, в образовании клеточных стенок бактерий и клеточных мембран всех живых организмов.
4. Опорная. Целлюлоза и другие полисахариды оболочек растений не только защищают клетки от внешних воздействий, но и образуют прочный остов растения. В комплексе с белками углеводы входят в состав хрящевых тканей человека и животных.
5. Специфические функции углеводов. Углеводы определяют антигенную специфичность, обусловливают различия групп крови и др.
6. Углеводы выполняют также функцию запасных питательных веществ.
Углеводы подразделяют на моносахариды, олигосахариды и полисахариды.
К моносахаридам относятся углеводы и их производные, которые не способны расщепляться без потери основных углеводных свойств.
Олигосахариды гидролизуются с образованием небольшого числа моносахаридов (от 2 до 10).
Полисахариды (гликаны) представляют собой высокомолекулярные полимеры моносахаридов и их производных. Число остатков моносахаридных единиц в них от 10 до нескольких тысяч.
Образование углеводов происходит в растениях в процессе фотосинтеза и в микроорганизмах в процессе хемосинтеза.
Человек и животные не способны к первичному биосинтезу углеводов из неорганических веществ, они могут лишь образовывать их в процессе глюконеогенеза из других органических веществ (органических кислот, жиров, аминокислот), но главным источником углеводов является пища. Углеводы составляют существенную часть рациона человека и многих животных. На их долю приходится 60-70% общей суммы калорий пищи человека. Углеводы всасываются через слизистую оболочку кишечника только в виде моносахаридов. Для расщепления и переваривания крупных полисахаридов в пищеварительном тракте имеются десятки различных ферментных систем. В результате последовательного воздействия ферментов углеводы превращаются в моносахариды, они хорошо всасываются через кишечную стенку в кровь и разносятся по организму для выполнения своих функций.
Липиды[12]
Липидами называются неоднородные в химическом отношении вещества, общим свойством которых является хорошая растворимость в неполярных органических растворителях: эфире, ацетоне, хлороформе, бензоле и т. п. По своему химизму липиды, в большинстве случаев, представляют собой сложные эфиры высших жирных кислот с глицерином или некоторыми другими спиртами специфического строения. В составе ряда липидов кроме этих компонентов встречаются фосфорная кислота, азотистые основания, или углеводы. В экстракте, полученном при обработке животных или растительных тканей органическими растворителями, присутствуют обычно высшие и полициклические спирты, жирорастворимые витамины, которые некоторые авторы также относят к классу липидов.
Липиды могут быть классифицированы следующим образом:
1. Нейтральные жиры и свободные жирные кислоты