Фотосинтез - проще простого
Страница 9
Ну а каковы хлоропласты этого растения? В теле водоросли содержатся один или несколько хлоропластов. Если их много, они имеют дисковидную или веретеновидную форму. Одиночные обладают сетчатым строением. Ученые считают, что сетчатая структура создается в результате соединения мелких хлоропластов друг с другом.
Многие ученые наблюдали усвоение углекислого газа хлоропластами, находящимися в животных клетках. У свежесобранных моллюсков, элизии зеленой интенсивность фотосинтетического усвоения углекислого газа составляла 55—67 % величины, определенной для неповрежденной водоросли кодиума хрупкого, из которого моллюсками были «приобретены» хлоропласты. Любопытно, что и содержание хлорофилла на 1 грамм сырой массы ткани у водоросли и животного было сходным.
Благодаря фотосинтезу моллюски фиксировали углекислый газ на протяжении всех 93 дней опыта. Правда, скорость фотосинтеза постепенно ослабевала и к концу эксперимента составляла 20—40 % от первоначальной.
В 1971 году ученые наблюдали выделение кислорода в ходе фотосинтеза хлоропластов, налюдящихся в клетках тридакны. Тридакны—типичные обитатели тропических морей. Особенно широко они распространены на коралловых рифах Индийского и Тихого океанов. Великаном среди моллюсков выглядит тридакна гигантская, достигающая иногда длины 1,4 метра и общей массы 200 килограммов. Тридакны интересны для нас своим симбиозом с одноклеточными водорослями. Обычно они так располагаются на дне, чтобы их полупрозрачная мантия, выступающая между створками раковины, была обращена вверх и сильно освещалась солнцем. В ее межклеточном пространстве в большом количестве поселяются зеленые водоросли. Несмотря на значительные размеры, моллюск питается только теми веществами, которые вырабатывают водоросли-симбионты.
В Средиземном море и у берегов Франции в Атлантике встречается червь конволюта, у которого под кожным покровом также обитают зеленые водоросли, осуществляющие синтез органических веществ из неорганических. Благодаря активности своих «квартирантов» червь не нуждается в дополнительных источниках пиши, поэтому желудочно-кишечный тракт у него атрофировался.
Во время отлива множество конволют покидает свои норы для того, чтобы принять солнечные ванны. В это время водоросли под их кожей интенсивно фотосинтезируют. Некоторые виды этих червей находятся в полной зависимости от своих поселенцев. Так, если молодой червь не «заразится» водорослями, то погибнет от голода. В свою очередь водоросли, поселившиеся в теле конволюты, теряют способность к существованию вне его организма. «Заражение» происходит с помощью «свежих», не живших еще в симбиозе с червями водорослей в момент, когда личинки червя выходят из яиц. Эти водоросли, по всей вероятности, привлекаются какими-то веществами, выделяемыми яйцами червей.
В связи с рассмотрением вопроса функционирования хлоропластов в клетках животных чрезвычайно большой интерес представляют опыты американского биохимика М. Насса, в которых было показано, что хлоропласты сифоновой водоросли каулерпы, харовой водоросли нителлы, шпината и африканской фиалки захватываются клетками соединительной ткани (так называемыми фибробластами) мышей. Обычно в фибробластах, заглотавших инородное тело (этот процесс ученые называют фагоцитозом), вокруг поглощенной частицы образуется вакуоль. Постепенно чужеродное тело переваривается и рассасывается — исчезает. Когда же в клетки ввели хлоропласты, вакуоли не возникали, а фибробласты даже не пытались их переварить.
Пластиды сохраняли свою структуру и способность к фотосинтезу на протяжении трех недель. Клетки, ставшие из-за их присутствия зелеными, нормально делились. При этом хлоропласты стихийно распределялись по дочерним клеткам. Пластиды, находившиеся в фибропластах около двух дней, а затем вновь выделенные, оставались неповрежденными. Они усваивали углекислый газ с такой же скоростью, с какой фотосинтезировали свежие хлоропласты, выделенные из растений.
Предположим, что в ходе эволюции возникнут такие существа или их обнаружат на других планетах. Какими они должны быть? Ученые полагают, что в таком животном хлорофилл будет сосредоточен в коже, куда свободно проникает свет, необходимый как для синтеза зеленого пигмента, так и для образования органических веществ. «Зеленый человек» должен делать кое-что наоборот: днем, подобно сказочному королю, ходить в невидимой для всех одежде, а ночью, напротив, одеваться, чтобы согреться.
Проблема заключается в том, сможет ли такой организм получать с помощью фотосинтеза достаточно пищи. Исходя из максимально возможной интенсивности фотосинтеза растений в самых благоприятных условиях существования, можно подсчитать, сколько органического вещества сможет образовать зеленая кожа этого человека. Если принять, что 1 квадратный дециметр зеленого растения за 1 час синтезирует 20 миллиграммов Сахаров, то 170 квадратных дециметров человеческой кожи, доступной солнечным лучам, смогут образовать за это время 3,4 грамма. За 12-часовой день количество органического вещества составит 40,8 грамма. В этой массе будет концентрироваться около 153 калорий энергии. Такого количества явно недостаточно для удовлетворения энергетических потребностей человеческого организма, которые составляют 2000—4000 калорий в сутки.
Примем во внимание, что «зеленому человеку» не нужно думать о пропитании и быть слишком деятельным, поскольку пища сама поступает в его организм из хлоропластов кожи. Нетрудно прийти к заключению, что отсутствие физической нагрузки и малоподвижный образ жизни сделают его похожим на обычное растение. Иначе говоря, «зеленого человека» весьма трудно будет отличить от опунции.
Расчеты исследователей показывают: для того, чтобы образовать достаточное количество органического вещества, «зеленый человек» в ходе эволюции должен в 20 раз увеличить поверхность своей кожи. Это может произойти за счет возрастания числа складок и отростков. Для этого ему необходимо будет обзавестись подобием листьев. Если это произойдет, то он станет совсем малоподвижным и еще более похожим на растение.
Таким образом, существование крупных фотосинтезирующих животных и человека на Земле и в космосе едва ли возможно. Ученые полагают, что в любой биологической системе, хотя бы отдаленно напоминающей биосферу Земли, обязательно должны существовать растительноподобные организмы, обеспечивающие пищей и энергией как самих себя, так и животных.
Во второй половине XIX столетия было установлено, что энергия солнечного света усваивается и трансформируется при помощи зеленого пигмента хлорофилла.
На основе проведенных опытов можно сказать что, зеленая окраска хлорофилла определяется наличием в нем атома металла вне зависимости от того, будет ли это магний, медь или цинк.
Современная наука подтвердила правильность взглядов К. А. Тимирязева относительно исключительной важности для фотосинтеза именно красных лучей солнечного спектра. Оказалось, что коэффициент использования красного света в ходе фотосинтеза выше, чем синих лучей, которые также поглощаются хлорофиллом. Красные лучи, по представлениям К. А. Тимирязева, играют основополагающую роль в процессе мироздания и созидания жизни.
Как известно растения поглащают углекислый газ, который присоединяется к пятиуглеродному веществу под названием рибулезодифосфат, где потом он в дальнешем участвует во многих других реакциях.
Изучение особенностей фотосинтеза у разных растений, безусловно, будет способствовать расширению возможностей человека в управлении их фотосинтетической деятельностью, продуктивностью и урожаем. В целом фотосинтез это один из основополагающих процессов жизни, на котором основана большая часть современной растительной фауны на поверхности земли.
1. Б. Дижур «Зеленая лаборатория» — М.: Детгиз, 1954.
2. Артамонов В. И. «Занимательная физиология растений». – М.: Агропромиздат, 1991