Свечение сопровождающее биологические реакции
Страница 2
составляет для кетонов, образующихся при взаимодействии перекисных радикалов, в свою очередь, тоже около 10-4- 10 - 5.
Вот и выходит, что общий квантовый выход хемилюминесценции составляет всего-навсего 10-8-10-10.
Применение собственной (неактивированной) хемилюминесценции.
Почти сразу после того, как появились первые работы по собственной хемилюминесценции клеток и тканей, были сделаны попытки использовать
этот показатель в целях клинической диагностики. По понятным причинам первыми объектами были цельная кровь и плазма крови больных людей. Поскольку собственное свечение было очень слабым и измерять его было трудно, было сделано много попыток усилить это свечение: к плазме крови добавляли красители, перекись водорода, ионы двухвалентного железа и т.д. [4]. Природа химических реакций, обусловливающих свечение, была понятна далеко не всегда, но авторов предложений это не слишком беспокоило: лишь бы была разница между больными и здоровыми, а еще лучше между разными группами больных. Скорее удивительно, что при ряде патологий разница была довольно существенной. Пожалуй, наибольшее число публикаций в литературе посвящено свечению плазмы крови, к которой для инициирования цепного окисления липидов добавляли соли двухвалентного железа. Амплитуда сигнала хемилюминесценции хорошо коррелировала с количеством продуктов перекисного окисления липидов, определяемых химическим методом, и зависела от липидного состава плазмы крови и концентрации в ней антиоксидантов, то есть веществ, тормозящих процессы, идущие с участием
свободных радикалов. Во многих случаях данные таких анализов были признаны ценными в качестве дополнительных при постановке врачом диагноза заболевания, контроля за эффективностью лечения и прогноза течения болезни. Все же измерение неактивированной хемилюминесценции в широкую клиническую практику пока не вошло в отличие от хемилюминесценции в присутствии активаторов.
В присутствии определенных соединений, обычно называемых в отечественной литературе "активаторами", свечение клеток и тканей может быть усилено на несколько порядков величины. Наибольшее распространение получило измерение хемилюминесценции, связанной с выделением клетками активных форм кислорода (к которым относятся супероксид, гидроксильный радикал, перекись водорода и гипохлорит): хемилюминесценция наблюдается в присутствии активаторов люминола и люцигенина. Активированная хемилюминесценция довольно широко применяется в клиническом биохимическом анализе.
Собственная хемилюминесценция, сопровождающая биохимические реакции в клетках и тканях, обладает, как правило, очень низкой интенсивностью и не случайно получила название "сверхслабого свечения" . Это оказалось главным и пока не преодоленным препятствием на пути к широкому использованию собственной хемилюминесценции в аналитических целях.
Значительное распространение получило однако измерение хемилюминесценции в присутствии определенных соединений, получивших в отечественной литературе общее название "активаторов", а за рубежом - "усилителей" (enhancer) хемилюминесценции. По механизму действия активаторы распадаются на две четко различающиеся группы, которые можно соответственно назвать химическими и физическими активаторами .
Химические активаторы ХЛ - это соединения, вступающие в реакции с активными формами кислорода или органическими свободными радикалами, в ходе которых образуются молекулы продуктов в возбужденном электронном состоянии.
Наблюдаемое при этом hemilum связано с переходом молекул в основное состояние., что приводит к высвечиванию фотонов:
Активатор + радикалы ® продукт* ® продукт + фотон
Хорошо известными представителями таких активаторов могут служить люминол (3-аминофталевый гидразид, см. Рис. 4) и люцигенин [Бис(N-метилакридиний)] Физические активаторы не вступают в химические реакции и не влияют на ход реакций, сопровождающихся hemilumм, но тем не менее многократно усиливают интенсивность хемилюминесценции. В основе их действия лежит физический процесс процесса переноса (миграции) энергии с молекулы продукта хемилюминесцентной реакции на активатор:
Радикалы ® продукт* ® продукт + фотон 1 (неактивированная ХЛ)
Продукт* + активатор ® продукт + активатор* ® фотон 2 (активированная ХЛ)
По идеологии хемилюминесцентный иммунный анализ не отличается от радиоиммунного, с той только разницей, что вместо радиоактивно-меченных субстратов или антител используются субстраты и антитела,"меченные" соединением, которое вступает в реакции, сопровождающиеся хемилюминесценцией, в присутствии перекиси водорода и катализатора (обычно это фермент пероксидаза).
Хемилюминесцентной меткой (ХЛ-меткой) чаще всего служат низкомолекулярные соединения, по химической структуре близкие люминолу и люцигенину, такие как изолюминол, сукцинилированный люминол, эфиры акридиния и другие. Присоединение хемилюминесцентной метки производится либо к антигену, т. е. низкомолекулярному соединению либо к антителу на этот антиген. В первом случае метод называется CIA (Chemiluminescent Immuno Assay), во втором - ICMA (ImmunoChemiluminoMetric Assay). По русски это соответствовало бы ХИА (Хемилюминесцентный Иммунный Анализ) и ИХМА (Иммуно-ХемилюминоМетрический Анализ).
Оба метода направлены на определение биологически-важных низкомолекулярных соединений (например, гормонов) в тех концентрациях (как правило, очень низких), в которых они встречаются в биологических объектах.
При использовании метода CIA к раствору, содержащему интересующее нас анализируемое соединение (обозначим его как A) добавляют определенное количество того-же, но ХЛ-меченного соединения (обозначим его как A*) и антитела (анти-A). Образуется смесь меченных и немеченных иммунных комплексов (A-анти-A и A*-анти-A, соответственно):
A + A* + анти-A ® A-анти-A + A*-анти-A.
Очень важно, что пропорция между меченным и немеченым иммунными комплексами зависит от того, сколько меченного антигена мы добавили (A*) и сколько немеченого было в исследуемой пробе (A), а именно: чем больше было немеченого антигена, тем меньше доля меченных антител.
Теперь остается очистить смесь иммунных комплексов и определить количество A*-анти-A по хемилюминесценции. Интенсивность ХЛ будет тем меньше, чем больше было немеченых антигена A (т. е. анализируемого вещества) в исследуемой пробе. Чтобы анализ был количественным, предварительно строят калибровочную кривую, т. е. измеряют зависимость интенсивности ХЛ в конечной пробе от концентрации стандартного раствора изучаемого вещества A. Затем измеряют интенсивность ХЛ в растворе с неизвестной концентрацией антигена (A), повторяя те же процедуры, и по калибровочной кривой находят концентрацию A.
При использовании метода ICMA берут избыток ХЛ-меченного антитела (анти-A*) и добавляют к нему раствор с изучаемым веществом (A). Образуется ХЛ-меченный иммунный комплекс:
A + анти-A* ® A-анти-A*
Остается отделить иммунные комплексы от других участников реакции и измерить интенсивность ХЛ. В данном случае она будет тем выше, чем больше было анализируемого вещества A в пробе. Для количественного анализа и здесь предварительно строят калибровочную кривую.
В обоих методах одна из практических трудностей - это очистка иммунных комплексов. Она решается также методами иммунохимии. Детали этой техники мы здесь рассматривать не будем, но один из подходов заключается, например, в использовании порошка сорбента (см. Рис. 6 В), к поверхности которого "пришиты" (т. е. присоединены ковалентной химической связью) антитела к анти-А (назовем их анти-анти-А). В присутствии растворенных комплексов (А-анти-А и/или А*-анти-А) образуется тройной комплекс ("сандвич"): (анти-анти-А)-(анти-А)-А и/или (анти-анти-А)-(анти-А)-А*. Адсорбент можно осадить и затем определить в осадке (после дополнительных обработок) количество меченного антигена.