Синдром гибридного дисгенеза у Drosophila melanogaster
Синдром гибридного дисгенеза у Drosophila melanogaster
Мобильные генетические элементы (МГЭ) представляют дискретные сегменты ДНК, которые могут перемещаться из одного местоположения в другое внутри хромосом или между ними. На данный момент мобильные генетические элементы обнаружены в геномах практически всех изученных организмов (Хесин, 1984). Геном Drosophila melanogaster содержит около 50-ти различных семейств мобильных генетических элементов, которые вместе составляют 10-15 % ДНК этого вида (Finnegan, Fawsett, 1986; FlyBase, 1999). Число копий элементов отдельных семейств варьирует от нескольких до сотни, и при активации они могут оказывать значительное влияние на функционирование генома (Britten, 1997) и на генетическую изменчивость (Kidwell, Lisch, 1997). Мобильные генетические элементы имеют несколько механизмов перемещения и могут выполнять разные функции (табл. 3), в связи с чем, активация различных семейств мобильных элементов может иметь как отрицательные, так и положительные последствия для генома хозяина (Kidwell, Lisch, 1997).
Некоторые МГЭ дрозофилы способны активироваться в особых межлинейных скрещиваниях и вызывать совокупность генетических нарушений известных как синдром гибридного дисгенеза (Kidwell et al., 1977; Bregliano et al., 1980). Эти нарушения включают повышенную частоту мутаций, хромосомных аберраций и рекомбинаций, температуро-зависимую стерильность (Bregliano et al., 1980). К настоящему времени описано три независимые системы гибридного дисгенеза, в которых проявление перечисленных выше нарушений обусловлено активностью мобильных элементов I, P и hobo (Bregliano et al., 1980). Все три системы имеют сложные механизмы регуляции активности мобильных генетических элементов. Эти механизмы напрямую связаны с процессами транспозиции и репарации, поэтому реагируют на действие факторов, влияющих на эти процессы. Исследование вопроса функционирования систем гибридного дисгенеза в неблагоприятных условиях окружающей среды может иметь большое теоретическое и прикладное значение (Иващенко и др., 1990).
P-M система гибридного дисгенеза была открыта в середине 70-х годов (Kidwell et al., 1977) и на сегодняшний день является наиболее изученной по отношению к H-E и I-R системам. За возникновение этой системы гибридного дисгенеза отвечает мобильный элемент P (Engels, 1989). В соответствии с наличием в геноме P-элементов различают несколько типов линий Drosophila melanogaster (Raymond et al., 1991). P-линии содержат 30-60 копий P-элемента, одна треть из которых состоит из полных P-элементов, а две трети из дефектных (O'Hare, Rubin, 1983; O'Hare et al., 1992). Эти линии имеют P-цитотип. В геноме M-линий отсутствуют P-элементы, и они имеют M-цитотип. Синдром гибридного дисгенеза наблюдается только при скрещивании самок из M-линий (Maternal) с самцами из P-линий (Paternal), однако поскольку P-цитотип наследуется по материнской линии, потомство от обратных скрещиваний между P-самками и M-самцами обычно нормальное. Дополнительно различают также M' и Q линии. M' или псевдо-M линии имеют в геноме множество дефектных P-элементов, однако, характеризуются наличием слабого потенциала репрессии (M-цитотип) (Simmons et al., 1987). Некоторые M'-линии способны индуцировать определенные аспекты гибридного дисгенеза. Q-линии также несут в геноме дефектные элементы и, подобно P-линиям, имеют P-цитотип. Q-линии обладают способностью индуцировать дисгенез в скрещиваниях с истинными M-линиями (Simmions et al., 1985).
В настоящее время P-элемент подробно изучен на молекулярном уровне, что позволяет нам более четко представить его функции в P-M системе гибридного дисгенеза. Как уже было отмечено, в геноме Drosophila melanogaster встречаются структурно и функционально гетерогенные P-элементы (O'Hare, Rubin, 1983). Полноразмерный P-элемент имеет длину 2907 п.н. и характеризуется наличием терминальных инвертированных повторов размером 31 п.н. и субтерминальными инвертированными повторами размером 11 п.н., которые необходимы для его перемещения (O'Hare, Rubin, 1983). Внутренняя часть содержит небольшой инвертированный повтор с неизвестными функциями и ген транспозазы, состоящий из четырех экзонов и трех интронов (Engels, 1989). Ген транспозазы кодирует белок необходимый для перемещения P-элемента, поэтому полноразмерный P-элемент сам контролирует свое перемещение, т. е. является автономным (Rio et al., 1986). Кроме полноразмерных P-элементов, в геноме различных линий Drosophila melanogaster встречаются дефектные копии (O'Hare et al., 1992). К ним относится KP элемент, который имеет делецию в центральном участке, захватывающую 808-2560 нуклеотиды (Black et al., 1987), элементы A12 и D50 (Engels, 1989; Rasmusson et al., 1993). Дефектные P-элементы не способны к синтезу транспозазы, но благодаря сохранности интактных терминальных и субтерминальных последовательностей, они могут перемещаться с использованием транспозазы полноразмерных элементов (Engels, 1989).
На сегодняшний день известно два типа регуляции активности P-элемента (Engels, 1989). Первый тип регуляции ограничивает активность P-элемента только клетками зародышевой линии, второй тип регулирует активность P-элемента в дисгенных скрещиваниях. Ограничение активности P-элемента только клетками зародышевой линии является следствием регулируемого сплайсинга мРНК (Laski et al., 1986). В зародышевых клетках сплайсируются три интрона, что ведет к образованию транспозазы. В соматических тканях третий интрон не удаляется и, вследствие присутствия в этом интроне стоп-кодона, образуется усеченный белок, который действует как репрессор (Robertson, Engels, 1989). Тканеспецифичный сплайсинг является следствием действия соматических факторов, ингибирующих сплайсинг третьего интрона (Siebel et al., 1992).
Механизм регуляции транспозиций P-элемента в дисгенных скрещиваниях еще не понят полностью. На непродолжительный срок (несколько поколений) эта регуляция наследуется по материнской линии, но на более длительный срок определяется хромосомно, самими P-элементами. Такой тип регуляции в клетках зародышевой линии именуется P-цитотипом, ее отсутствие обозначается как M-цитотип. Модель, предложенная для объяснения принципов детерминации и наследования P-цитотипа, основана на альтернативном сплайсинге пре-мРНК P-элемента на уровне 2-3 интрона. Этот альтернативный сплайсинг определяет продукцию транспозазы или репрессора. Сплайсинг зависит от концентрации пре-мРНК P-элемента, будучи менее эффективен, когда концентрация низкая (O'Hare et al., 1992). В P-цитотипе промотор P-элемента репрессирован, что ведет к низкой концентрации пре-мРНК и к синтезу репрессорного белка. Наоборот, в дисгенных условиях P-промотор не репрессирован, что ведет к высокой концентрации пре-мРНК и к синтезу транспозазы. Эта модель была первоначально подтверждена генетическими методами (Lemaitre et al., 1993) и затем данными молекулярного анализа (Roche et al., 1995). Репрессионная способность P-элемента зависит также от структуры и положения в геноме (Ronsseray et al., 1997).
Высокий уровень регуляции перемещений P-элемента предполагает высокую чувствительность P-M системы гибридного дисгенеза к действию ДНК-повреждающих факторов и к нарушениям в процессах репарации. Действительно, это подтверждается многочисленными экспериментальными факторами. Показано, что облучение влияет на эффекты транспозиций P-элемента в условиях гибридного дисгенеза, что повышает выход рецессивных и доминантных летальных мутаций (Margulies et al., 1986, 1987). Наблюдаемый при этом эффект синергичного действия облучения и активности транспозона, вероятнее всего, связан с индукцией этими двумя факторами однотипных повреждений ДНК, а именно, двунитевых разрывов. Способность P-элемента вызывать такие серьезные повреждения ДНК, а также активность на премейотических стадиях развития яйцеклеток, обусловливает повышенный интерес к вопросу о функционировании P-M системы гибридного дисгенеза в условиях нарушения репарации. Особое значение могут иметь мутации в генах mei-9+ и mei-41+, контролирующих одновременно мейотическую рекомбинацию и репарацию (Sekelsky et al., 1998). При исследовании системы транспозиций в условиях гибридного дисгенеза у линий с мутациями генов репарации mei-9+, mei-41+ и mus101+ не наблюдали видимого эффекта на уровень рекомбинации у самцов и инсерционный мутагенез (Slatko et al., 1984). Мутации mei-41 и mus101 имели продленный эффект на нерасхождение хромосом и эмбриональную смертность, усиливая их, присутствие мутации mei-41 значительно снижало появление хромосом с P-элементами. Эти эффекты наблюдали только у мух с M-цитотипом, что демонстрирует их обусловленность синдромом гибридного дисгенеза. На основании этих результатов сделан вывод, что дефекты в процессе пострепликативной репарации (мутация mei-41) усиливают те из проявлений гибридного дисгенеза, которым сопутствуют события клеточной гибели и доминантной летальности (Slatko et al., 1984). Однако, ни пострепликативная репарация (мутация mei-41) ни эксцизионная репарация (мутация mei-9) не влияют на уровень рекомбинации у самцов и частоту инсерций. В то же время показано, что в присутствии мутаций mei-9 и mei-41 резко повышается уровень индуцированных гибридным дисгенезом видимых мутаций, в том числе, в локусе singed (Eeken, Sobels, 1981). Важность путей пострепликативной и эксцизионной репарации для репарации повреждений, индуцируемых при транспозициях P-элемента, подтверждается исследованием уровня стерильности в скрещиваниях с использованием линий mei-9 и mei-41 (Margulies, 1990). Показано, что при скрещивании мух, имеющих нарушение системы репарации, с мухами, имеющими активные P-элементы в геноме, наблюдается высокий уровень термочувствительной стерильности, низкая плодовитость и преждевременное старение клеток зародышевой линии самцов (Margulies, 1990).