Регистрация сигнальных молекул
Страница 2
Доказано, что функция распознавания клеток и прикрепления к ним, а так же вырезание, перенос и, возможно, интеграция тДНК в растительный геном кодируется двумя хромосомными генами – Chva и Chvb [13] и рядом генов vir-области, находящихся на Ti-плазмиде [14].
После переноса в ядро растительной клетки, тДНК может интегрировать в геном в виде одной или нескольких копий [15]. Встроенная тДНК имеет свойства, характерные для ДНК эукариот, что показано в экспериментах по гиперчувствительности к ДНК-азе I (Schafer, 1984). В зависимости от типа Ti-плазмиды, в тДНК находится от семи до тринадцати генов, ответственных за опухолевый фенотип. Гены 1 и 2 кодируют ферменты, участвующие в синтезе ауксина, индолилуксусной кислоты, в то время, как ген 4 кодирует изопентенилтрансферазу, синтезирующую цитокинин изопентенила денозин 5'-монофосфат [16].
Одновременная транскрипция генов 1,2 и 4 приводит к повышению уровня фитогормонов внутри трансформированных клеток. Результатом этого является повышение митотической активности и образование опухоли. Другие гены тДНК кодируют синтез так называемых опинов, из которых наиболее изучены нопапин и октопин. Опины представляет собой производное аминокислот и сахаров, которые служат источником питания для агробактерий [14]. В целом, образование корончатого галла представляет собой хорошо охарактеризованный пример генетической инженерии растений в природе.
Мутации в вирулентных генах агробактерий. Наличие Ti-плазмид в клетках агробактерий является абсолютно необходимым условием патогенности микроорганизма. Излеченные от Ti-плазмид штаммы агробактерий авирулентны. На вирулентность Agrobacterium tumefaciens оказывают влияние различные мутации, картируемые как на опухолевых плазмидах, так и на хромосомах. Ранние этапы взаимодействия агробактерий с растениями, так же как хемотаксис, прикрепление к поверхности растительной клетки и специфическое связывание в центрах инфекции контролируются генами, имеющими хромосомную локализацию. В хромосоме расположены некоторые гены, регулирующие экспрессию vir-генов Ti-плазмид [19]. Присоединение агробактерий к клеткам растения является одним из первых этапов, определяющих эффективное взаимодействие. Этот этап у Agrobacterium tumefaciens контролируют два связанных между собой хромосомных локуса Chva и Chvb, размерами 1,5 kb и 5kb, соответственно [Дуглас и др, 1985]. Гены этих локусов экспрессируются конститутивно. В результате транспозонного мутагенеза этих областей получают авирулентные или дефекнтые по прикреплению агробактерии. Мутации в этих локусах сильно понижают или ингибируют вирулентность бактерии, но не для всех хозяев. Локус Chvb определяет синтез нейтрального циклического b-D-гликана, который трансформируется в периплазматическое пространство клетки с помощью продукта гена Chva. Роль нейтрального b-D-гликана в инфекционном процессе еще точно не установлена. Помимо циклического b-D-гликана в прикреплении патогенных агробактерий к растительным клеткам принимают участие и другие полисахариды, в частности внеклеточные экзополисахариды.
Организация vir-генов Ti-плазмид. Вирулентные гены агробактерий на Ti- и Ri-плазмидах кластеризованы в области vir разметом около 30-35 kb, проявляющей в этих плазмидах значительную гомологию ДНК. Выявлена также гомология vir-генов Ti-плазмид Agrobacterium tumefaciens с tra-генами конъюгитивных плазмид. В ----- Ti-плазмидах в области vir локализовано шесть различных групп комплементации A, B, C, D, E и G, организованных в единый регулон [Stachel Nester, 1986]. Октопиновая Ti-плазмида Arh 5 имеет дополнительный локус vir F, расположенный справа от локуса vir E [Kooykaas et al., 1984]. Мутации в генах и --------- vir A, vir G, vir B и vir D придают агробактериям авирулентный фенотип, в отличие от большинства хромосомных мутаций, имеющих круг трансформируемых растений-хозяев.
Продукты генов vir-области контролируют процессинг тДНК в бактериальной клетке, ее перенос в растительную клетку и интеграцию в ядерный геном растения, причем эти процессы гены vir могут определять не только в цис, но и в транс положении по отношению к тДНК (то есть находясь в разных репликонах). Исходя из этого свойства области vir, сконструированы и успешно используются в практике удобные бинарные векторы для генетической инженерии растений [Дрейпер с соавт, 1991]. Для процессов "вырезания" тДНК из плазмиды (точнее, высвобождения в процессе репликативного синтеза) и ее переноса в растение необходимо фланкирование этой области особыми границами: несовершенными прямыми повторяющимися последовательностями ДНК размером 24 ---- , проявляющими значительную гомологию у всех изученных Ti- и Ri-плазмид. Границы тДНК гомологичны области oriT конъюгативных плазмид. В этой области сайт-специфические эндонуклеазы производят одноцепочечный разрыв, служащий началом репликации по типу разматывающегося рулона, происходящей в процессе транспорта плазмиды. Репликация обеспечивает сохранение плазмиды в материнской клетке и появление ее копии в дочерней.
Для нормального процессинга тДНК и ее переноса в растительную клетку особенно важна ее правая граница, которая одна может определять полярность переноса тДНК. Удаление правой границы из Ti-плазмид делает агробактерии полностью авирулентными. Замена ее на искусственно синтезированную, так же как и на левую, восстанавливает вирулентность микроорганизма.
На процессинг тДНК в клетках бактерий влияют мутации в генах vir D, vir C и vir E – оперонов, на транспорт т-комплекса в растительную клетку – мутации в генах vir B и vir D – оперонов.
1.1.2. Создание векторов на основе Ti-плазмид
В начале восьмидесятых годов были сделаны первые попытки перенести чужеродные последовательности ДНК в растительные клетки либо с помощью транспозонного мутагенеза [Uernals-teens et al., 1980], либо путем сайт-специфической миграции генов в тДНК и последующей двойной рекомбинацией с Ti-плазмидой дикого типа [Matrke et al., 1981; leemans et al., 1981]. Однако, эти ранние эксперименты, основанные на двойной рекомбинации, занимали много времени, были довольно сложны и трансформации проходили с очень низкой частотой. Необходимо было разработать более эффективные векторы, чтобы облегчить генетические манипуляции с бактериями и позволить селекцию и регенерацию трансформатов.
Сейчас используют две принципиально разные системы для введения чужеродных генов в растения с помощью Ti-плазмид:
1. ---- векторы
2. бинарные векторы.
В основе создания -------- векторов лежит тот факт, что гены тДНК не ------- для растительных клеток, и любая последовтельность ДНК, встроенная между границами тДНК, может интегрировать в хромосому растительной клетки и нормально там экспрессироваться [Zambryski et al., 1983]. В -------- векторых системах тДНК можно заменить, например, на последовательность pBR322, а чужеродную ДНК, которую предполагается перенести в растения, нужно проклонировать в этом же векторе.
Затем путем гомологичной рекомбинации эта чужеродная ДНК может быть перенесена на Ti-плазмиду реципиентного штамма агробактерии (рис. 2). Одним из первых таких векторов на основании Ti-плазмид авляется pGV3850 [Zambryski et al., 1983]. В нем все гены, ответственные за синтез фитогормонов, были заменены на последовательность pBR322.
ДНК pBR322 обеспечивала гомологию для ------- области тДНК pGV3850 с любыми производыми pBR, несущими клонированный ген.
Гены, кодирующие различные маркерные белки для быстрого отбора трансгенных растений, были встроены в pGV3850 [De Blocle, 1984]. Была разработана система трехродительного скрещивания для переноса любых производных pBR322 из E. coli в A. tumefaciens pGV3850 [Van Haute et al., 1983]. В настоящее время сконструированы и успешно используются и другие --- ---------- векторы на основе Ti-плазмид [Royers et al., 1988].
Рис. 2.
Схемы -------- (А) и бинарной (Б) векторных систем. vir – область вирулентности. HOM – области гомологии, в пределах которых может происходить рекомбинация, приводящая к образованию коинтегратов. LB и RB – левая и правая границы тДНК. MCS - ----- сайт для клонирования. РТМ – маркет трансформации для растений. RES – маркер устойчивости к антибиотику для бактерий. OriT – начало переноса и bom-сайт для мобилизации векторов при конъюгации. Col E1 – начало репликации из плазмиды Col E1. RK2 – начало репликации из плазмиды широкого круга хозяев RK2.